MPI
Pricing Call Option
Pseudo and Sobol
Monte Carlo

HPCFall2012
Florence Ortiz
12/18/2012
Monte Carlo Method

- Pricing a Call Option

\[I_N[f] = \frac{1}{N} \sum_{k=1}^{N} f(\text{sequence of random points}, K) = e^{-rT} \left[\frac{1}{N} \sum_{k=1}^{N} \max(S_T^k - K, 0) \right] \]

- \(I[f] = \text{Black Scholes formula} \)

\[\varepsilon = |I[f] - I_N[f]| \]

- Slow convergence: \(\varepsilon_N = \frac{\sigma(f)}{N^{1/2}} \)
 - \(f(\sigma) \) can be decreased by: antithetic variables or control variates.
 - But the rate the converge remains: \(\varepsilon_N \sim \frac{1}{N^{1/2}} \)
Monte Carlo Method

• MC with Sobol
 – Improve convergence in Monte Carlo \(\varepsilon_N = \frac{O(\ln N)^n}{N} \)
 – Discrepancy is a measure of deviation of uniformity.
 – Best uniformity of distribution for as \(N \) goes to infinity.
 – Parallelization can be achieved by changing parameters in the “Preprocessing” part of the code.
 – No inter-processor communication is needed.
Monte Carlo Method

• MC with Sobol
 – Improve convergence in Monte Carlo $\epsilon_N = \frac{O(\ln N)^n}{N}$
 – If $N = 2^k$, k is integer
 – Discrepancy is a measure of deviation of uniformity.
 – Best uniformity of distribution for as N goes to infinity.
 – Parallelization can be achieved by changing parameters in the “Preprocessing” part of the code.
 – No inter-processor communication is needed.
Monte Carlo Method

Intel(R) Core (TM) i7-3612QM **CPU@2.10GHz** RAM 8.00GB 64 bit OS

<table>
<thead>
<tr>
<th>Random/Processors Number</th>
<th>Seconds</th>
<th>Exact Price</th>
<th>MC Price</th>
<th>NPaths</th>
<th>N</th>
<th>Absolute Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sobol/8</td>
<td>6.340026</td>
<td>19.620613</td>
<td>19.561750</td>
<td>2</td>
<td>1000000</td>
<td>5.886e-02</td>
</tr>
<tr>
<td>Pseudo/8</td>
<td>6.575098</td>
<td>19.620613</td>
<td>21.795881</td>
<td>2</td>
<td>1000000</td>
<td>2.175+00</td>
</tr>
<tr>
<td>Sobol /4</td>
<td>3.427575</td>
<td>19.620613</td>
<td>19.417058</td>
<td>1</td>
<td>1000000</td>
<td>2.036e-01</td>
</tr>
<tr>
<td>Pseudo/4</td>
<td>3.466962</td>
<td>19.620613</td>
<td>21.053336</td>
<td>1</td>
<td>1000000</td>
<td>1.433e+00</td>
</tr>
</tbody>
</table>
Monte Carlo Method

Intel Core 2 Duo **CPU@3.06GHz** RAM 4.00GB 32 bit OS

<table>
<thead>
<tr>
<th>Random/Processors Number</th>
<th>Seconds</th>
<th>Exact Price</th>
<th>MC Price</th>
<th>nPaths</th>
<th>N</th>
<th>Absolute Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sobol/4</td>
<td>12.831499</td>
<td>19.620613</td>
<td>19.731652</td>
<td>2</td>
<td>1000000</td>
<td>1.110e-01</td>
</tr>
<tr>
<td>Pseudo/4</td>
<td>12.721947</td>
<td>19.620613</td>
<td>25.817706</td>
<td>2</td>
<td>1000000</td>
<td>6.197e+00</td>
</tr>
<tr>
<td>Sobol/4</td>
<td>18.478064</td>
<td>19.620613</td>
<td>19.446532</td>
<td>3</td>
<td>1000000</td>
<td>1.741e-01</td>
</tr>
<tr>
<td>Pseudo/4</td>
<td>18.931408</td>
<td>19.620613</td>
<td>29.742907</td>
<td>3</td>
<td>1000000</td>
<td>1.012e+01</td>
</tr>
</tbody>
</table>
Monte Carlo Method

<table>
<thead>
<tr>
<th>Precision Floating</th>
<th>Real Number</th>
<th>The most significant</th>
<th>Binary representation exponent part</th>
<th>Binary representation of the mantissa part</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single</td>
<td>$y = (1 + x)2^r$</td>
<td>$d_0 = 0$</td>
<td>$d_1 \ldots d_8$ r+127 r is the floating point exponent $-126 < r < 127$</td>
<td>$d_9 \ldots d_{31}$ $x2^{23}$</td>
</tr>
<tr>
<td>Double</td>
<td>$y is d_0d_1 \ldots d_{63}$</td>
<td>$d_0 = 0$</td>
<td>$d_1 \ldots d_{11}$ r is the floating point exponent $-1022 < r < 1023$</td>
<td>$d_{12} \ldots d_{63}$ $x2^{52}$</td>
</tr>
</tbody>
</table>
Monte Carlo Method
Atanassov’s Algorithm Sobol Generator

Avoids the multiplication and conversion from integer to floating point

<table>
<thead>
<tr>
<th>Single</th>
<th>Double</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. $X \sim [0,1)$</td>
<td>4. If one xor’s 001111111111 to the twelve most-significant bits of y</td>
</tr>
<tr>
<td>2. Y is the mantissa</td>
<td></td>
</tr>
<tr>
<td>3. Y is stored as a 32 bit integer</td>
<td></td>
</tr>
<tr>
<td>4. If one xor’s 001111111 to the nine most-significant bits of y</td>
<td></td>
</tr>
<tr>
<td>5. Remains in memory is the floating-point representation of $(1+x)$.</td>
<td></td>
</tr>
</tbody>
</table>
1. Input initial data:
 - if the precision is single, set the number of bits \(b \) to 32, and the maximal power of two \(p \) to 23, otherwise set \(b \) to 64 and \(p \) to 52;
 - dimension \(s \);
 - direction vectors \(\{a_{ij}\} \), \(i = 0, p, j = 1, \ldots, s \) representing the matrices \(A_1, \ldots, A_d \) (always \(a_{ij} < 2^{i+1} \));
 - scrambling terms \(d_1, \ldots, d_s \) - arbitrary integers less than \(2^p \), if all of them are equal to zero, then no scrambling is used;
 - index of the first term to be generated - \(n \);
 - scaling factor \(m \), so the program should generate elements with indices \(2^m j + n \), \(j = 0, 1, \ldots \).

2. Allocate memory for \(s \times l \) b-bit integers (or floating point numbers in the respective precision) \(y_1, \ldots, y_s \).

3. Preprocessing: calculate the twisted direction numbers \(v_{ij} \), \(i = 0, \ldots, p - 1, j = 0, \ldots, s \):
 - for all \(j \) from 1 to \(s \) do
 - for \(i = 0 \) to \(p - 1 \) do
 - if \(i=0 \), then \(v_{ij} = a_{ij} 2^{p-m} \), else
 \[
 v_{ij} = v_{i-1,j} \oplus (a_{i+m,j} \times (2^{p-i-m}))
 \]

4. Calculate the coordinates of the \(n^{th} \) term of the Sobol’ sequence (with the scrambling applied) using any known algorithm (this operation is performed only once). Add +1 to all of them and store the results as floating point numbers in the respective precision in the array \(y \).

5. Set the counter \(N \) to \(\left\lfloor \frac{n}{2^m} \right\rfloor \).

6. Generate the next point of the sequence:
 - When a new point is required, the user supplies a buffer \(x \) with enough space to hold the result.
 - The array \(y \) is considered as holding floating point numbers in the respective precision, and the result of subtracting 1. from all of them is placed in the array \(x \).
 - Add 1 to the counter \(N \);
 - Determine the first nonzero binary digit \(k \) of \(N \) so that \(N = (2M + 1)2^k \) (on the average this is achieved in 2 iterations);
 - consider the array \(y \) as an array of \(b \)-bit integers and updated it by using the \(k^{th} \) row of twisted direction numbers:
 for \(i = 1 \) to \(d \) do
 - \(y_i = y_i \oplus v_{ki} \)
 - return the control to the user. When a new point is needed, go to 6.
Monte Carlo Method

• Conclusion
 – Monte Carlo Convergence with Sobol’s sequences can be generated with speeds comparable or superior to those of pseudo random generators.

 – MPI is straightforward to be implemented to do Monte Carlo with Sobol’s sequences.

 – Pricing Exotic Options can be easily implemented.
Monte Carlo Method

• Acknowledgments
 – The author would like to thanks Prof. Andreas Kloeckner and Prof. Marsha Berger for their considerable time.

• References
 – URL: http://parmac1.bas.bg/emanouil/sequence.html.