As we have seen, Finite Automata are somewhat limited in the languages they can recognize. Pushdown Automata are another type of machine that can recognize a wider class of languages. Context Free Grammars, which we can think of as loosely analogous to regular expressions, provide a method for describing a class of languages called Context Free Languages. As we will see, the Context Free Languages are exactly the languages recognized by Pushdown Automata.

Pushdown Automata can be used to recognize certain types of structured input. In particular, they are an important part of the front end of compilers. They are used to determine the organization of the programs being processed by a compiler; tasks they handle include forming expression trees from input arithmetic expressions and determining the scope of variables.

Context Free Languages, and an elaboration called Probabilistic Context Free Languages, are widely used to help determine sentence organization in computer-based text understanding (e.g., what is the subject, the object, the verb, etc.).

3.1 Pushdown Automata

A Pushdown Automata, or PDA for short, is simply an NFA equipped with a single stack. As with an NFA, it moves from vertex to vertex as it reads its input, with the additional possibility of also pushing to and popping from its stack as part of a move from one vertex to another. As with an NFA, there may be several viable computation paths. In addition, as with an NFA, to recognize an input string \(w \), a PDA \(M \) needs to have a recognizing path, from its start vertex to a final vertex, which it can traverse on input \(w \).

Recall that a stack is an unbounded store which one can think of as holding the items it stores in a tower (or stack) with new items being placed (written) at the top of the tower and items being read and removed (in one operation) from the top of the tower. The first operation is called a \(\text{Push} \) and the second a \(\text{Pop} \). For example, if we perform the sequence
3.1. PUSHDOWN AUTOMATA

of operations Push(A), Push(B), Pop, Push(C), Pop, Pop, the 3 successive pops will read
the items B, C, A, respectively. The successive states of the stack are shown in Figure 3.1.

Let’s see how a stack allows us to recognize the following language \(L_1 = \{a^i b^i \mid i \geq 0\} \).
We start by explaining how to process a string \(w = a^i b^i \in L \). As the PDA reads the initial
string of a’s in its input, it pushes a corresponding equal length string of A’s onto its stack
(one A for each a read). Then, as \(M \) reads the b’s, it seeks to match them one by one against
the A’s on the stack (by popping one A for each b it reads). \(M \) recognizes its input exactly
if the stack becomes empty on reading the last b.

In fact, PDAs are not allowed to use a Stack Empty test. We use a standard technique,
which we call \$-shielding, to simulate this test. Given a PDA \(M \) on which we want to perform
Stack Empty tests, we create a new PDA \(\overline{M} \) which is identical to \(M \) except for the following
small changes. \(\overline{M} \) uses a new, additional symbol on its stack, which we name \$. Then at the
very start of the computation, \(\overline{M} \) pushes a \$ onto its stack. This will be the only occurrence
of \$ on its stack. Subsequently, \(\overline{M} \) performs the same steps as \(M \) except that when \(M \) seeks
to perform a Stack Empty test, \(\overline{M} \) pops the stack and then immediately pushes the popped
symbol back on its stack. The simulated stack is empty exactly if the popped symbol was a
\$.

Next, we explain what happens with strings outside the language \(L_1 \). We do this by
looking at several categories of strings in turn.

1. \(a^i b^h, h < i \).

 After the last b is read, there will still be one or more A’s on the stack, indicating the
 input is not in \(L_1 \).

2. \(a^i b^j, j > i \).

 On reading the \((i + i)\)st b, there is an attempt to pop the now empty stack to find a
 matching A; this attempt fails, and again this indicates the input is not in \(L_1 \).

3. The only other possibility for the input is that it contains the substring \(ba \); as already
described, the processing consists of an a-reading phase, followed by a b-reading phase.
The a in the substring \(ba \) is being encountered in the b-reading phase and once more
this input is easily recognized as being outside \(L_1 \).

As with an NFA, we can specify the computation using a directed graph, with the edge
labels indicating the actions to be performed when traversing the given edge. To recognize
an input \(w \), the PDA needs to be able to follow a path from its start vertex to a final vertex
starting with an empty stack, where the path's read labels spell out the input, and the stack operations on the path are consistent with the stack's ongoing contents as the path is traversed.

A PDA M_1 recognizing L_1 is shown in Figure 3.2. Because the descriptions of the

vertices are quite long, we have given them the shorter names p_1–p_4. These descriptions specify exactly the strings that can be read and the corresponding stack contents to reach the vertex in question. We will verify the correctness of these specifications by looking at what happens on the possible inputs. To do this effectively, we need to divide the strings into appropriate categories.

An initial understanding of what M_1 recognizes can be obtained by ignoring what the stack does and viewing the machine as just an NFA (i.e. using the same graph but with just the reads labeling the edges). See Figure 3.3 for the graph of the NFA N_1 derived from M_1. The significant point is that if M_1 can reach vertex p on input w using computation path

P then so can N_1 (for the same reads label P in both machines). It follows that any string recognized by M_1 is also recognized by N_1: $L(M_1) \subseteq L(N_1)$.

It is not hard to see that N_1 recognizes a^*b^*. If follows that M_1 recognizes a subset of a^*b^*. So to explain the behavior of M_1 in full it suffices to look at what happens on inputs
the form $a^i b^j$, $i, j \geq 0$, which we do by examining five subcases that account for all such strings.

1. λ

M_1 starts at p_1. On pushing $\$, p_2 and p_3 can be reached. Then on popping the $\$, p_4 can be reached. Note that the specification of p_2 holds with $i = 0$, that of p_3 with $i = h = 0$, and that of p_4 with $i = 0$. Thus the specification at each vertex includes the case that the input is $\$.

2. a^i, $i \geq 1$

To read a^i, M_1 needs to push $\$, then follow edge (p_1, p_2), and then follow edge (p_2, p_2) i times. This puts $\ A^i$ on the stack. Thus on input a^i, p_2 can be reached and its specification is correct. In addition, the edge to p_3 can be traversed without any additional reads or stack operations, and so the specification for p_3 with $h = 0$ is correct for this input.

3. $a^i b^h$, $1 \leq h < i$

The only place to read b is on edge (p_3, p_3). Thus, for this input, M_1 reads a^i to bring it to p_3 and then follows (p_3, p_3) h times. This leaves $\ A^{i-h}$ on the stack, and consequently the specification of p_3 is correct for this input. Note that as $h < i$, edge (p_3, p_4) cannot be followed as $\$ is not on the stack top.

4. $a^i b^i$, $i \geq 1$

After reading the i b's, M_1 can be at vertex p_3 as explained in (3). Now, in addition, edge (p_3, p_4) can be traversed and this pops the $\$ from the stack, leaving it empty. So the specification of p_4 is correct for this input.

5. $a^i b^j$, $j > i$

On reading $a^i b^j$, M_1 can reach p_3 with the stack holding $\$ or reach p_4 with an empty stack, as described in (4). From p_3 the only available move is to p_4, without reading anything further. At p_4 there is no move, so the rest of the input cannot be read, and thus no vertex can be reached on this input.

This is a very elaborate description which we certainly don’t wish to repeat for each similar PDA. We can describe M_1’s functioning more briefly as follows.

M_1 checks that its input has the form $a^* b^*$ (i.e. all the a’s precede all the b’s) using its underlying NFA (i.e. without using the stack). The underlying NFA is often called its finite control. In tandem with this, M_1 uses its $\$-shielded stack to match the a’s against the b’s, first pushing the a’s on the stack (it is understood that in fact A’s are being pushed) and then popping them off, one for one, as the b’s are read, confirming that the numbers of a’s and b’s are equal.

The detailed argument we gave above is understood, but not spelled out.
Now we are ready to define a PDA more precisely. As with an NFA, a PDA consists of a directed graph with one vertex, start, designated as the start vertex, and a (possibly empty) subset of vertices designated as the final set, F, of vertices. As before, in drawing the graph, we show final vertices using double circles and indicate the start vertex with a double arrow. Each edge is labeled with the actions the PDA performs on following that edge.

For example, the label on edge e might be: Pop A, read b, Push C, meaning that the PDA pops the stack, reads the next input character, and if the pop returns an A and the character read is a b, then the PDA can traverse e, which entails it pushing C onto the stack. Some or all of these values may be λ: Pop λ means that no Pop is performed, read λ that no read occurs, and Push λ that no Push happens. To avoid clutter, we usually omit the λ-labeled terms; for example, instead of Pop λ, read λ, Push C, we write Push C. Also, to avoid confusion in the figures, if there are multiple triples of actions that take the PDA from a vertex u to a vertex v, we use multiple edges from u to v, one for each triple.

In sum, a label, which specifies the actions accompanying a move from vertex u to vertex v, has up to three parts:

1. Pop the stack and check that the returned character has a specified value (in our example this is the value A).

2. Read the next character of input and check that it has a specified value (in our example, the value b).

3. Push a specified character onto the stack (in our example, the character C).

From an implementation perspective it may be helpful to think in terms of being able to peek ahead, so that one can see the top item on the stack without actually popping it, and one can see the next input character (or that one is at the end of the input) without actually reading forward.

One further rule is that an empty stack may not be popped.

A PDA also comes with an input alphabet Σ and a stack alphabet Γ (these are the symbols that can be written on the stack). It is customary for Σ and Γ to be disjoint, in part to avoid confusion. To emphasize this disjointness, we write the characters of Σ using lowercase letters and those of Γ using uppercase letters.

Because the stack contents make it difficult to describe the condition of the PDA after multiple moves, we use the transition function here to describe possible out edges from single vertices only. Accordingly, $\delta(p, A, b) = \{(q_1, C_1), (q_2, C_2), \ldots, (q_l, C_l)\}$ indicates that the edges exiting vertex p and having both Pop A and read b in their label are the edges going to vertices q_1, q_2, \ldots, q_l where the rest of the label for edge (p, q_i) includes action C_i, for $1 \leq i \leq l$. That is $\delta(p, A, b)$ specifies the possible moves out of vertex p on popping character A and reading b. (Recall that one or both of A and b might be λ.)

In sum, a PDA M consists of a 6-tuple: $M = (\Sigma, \Gamma, V, \text{start}, F, \delta)$, where

1. Σ is the input alphabet,

2. Γ is the stack alphabet,
3.1. PUSHDOWN AUTOMATA

3. V is the vertex or state set,

4. $F \subseteq V$ is the final vertex set,

5. start is the start vertex, and

6. δ is the transition function, which specifies the edges and their labels.

Recognition is defined as for an NFA, that is, PDA M recognizes input w if there is a path that M can follow on input w that takes M from its start vertex to a final vertex. We call this path a w-recognizing computation path to emphasize that stack operations may occur in tandem with the reading of input w. More formally, M recognizes w if there is a path $\text{start} = p_0, p_1, \ldots, p_m$, where p_m is a final vertex, the label on edge (p_{i-1}, p_i) is (Read a_i, Pop B_i, Push C_i), for $1 \leq i \leq m$, and the stack contents at vertex p_i is σ_i, for $0 \leq i \leq m$, where

1. $a_1a_2\ldots a_m = w$,

2. $\sigma_0 = \lambda$,

3. and Pop B_i, Push C_i applied to σ_{i-1} produces σ_i for $1 \leq i \leq m$.

We write $L(M)$ for the language, or set of strings, recognized by M.

Next, we show some more examples of languages that can be recognized by PDAs.

Example 3.1.1. $L_2 = \{a^i cb^i \mid i \geq 0\}$.

PDA M_2 recognizing L_2 is shown in Figure 3.4. The processing by M_2 is similar to that of M_1. M_2 checks that its input has the form $a^* cb^*$ using its finite control. In tandem, M_2 uses its $\$$-shielded stack to match the a’s against the b’s, first pushing the a’s on the stack

![Figure 3.4: PDA M2 recognizing L2 = {a^i cb^i | i ≥ 0}.](image-url)
(actually A's are being pushed), then reads the c without touching the stack, and finally pops the a’s off, one for one, as the b’s are read, confirming that the numbers of a’s and b’s are equal.

Example 3.1.2. $L_3 = \{wcw^R \mid w \in \{a, b\}^*\}$.

PDA M_3 recognizing L_3 is shown in Figure 3.5. M_3 uses its $\$-$shielded stack to match

- **p_1:** \[\lambda \text{ read empty} \]
- **p_2:** \[x \text{ read stack contents } \$X \]
- **p_3:** \[yzc \text{ read stack contents } \$Y \]
- **p_4:** \[wcw^R \text{ read stack empty} \]

Read a
Read b
Read c
Read a
Read b
Read c

Figure 3.5: PDA M_3 recognizing $L_3 = \{wcw^R \mid w \in \{a, b\}^*\}$. Z denotes string z in capital letters.

the w against the w^R, as follows. It pushes w on the stack (the end of the substring w being indicated by reaching the c). At this point, the stack content read from the top is $w^R\$, so popping down to the $\$ outputs the string w^R. This stack contents is readily compared to the string following the c. The input is recognized exactly if they match.

Example 3.1.3. $L_4 = \{ww^R \mid w \in \{a, b\}^*\}$.

PDA M_4 recognizing L_4 is shown in Figure 3.6. This is similar to Example 3.1.2. The one difference is that the PDA M_4 can decide at any point to stop reading w and begin reading w^R. Of course there is only one correct switching location, at most, but as M_4 does not know where it is, M_4 considers all possibilities by means of its nondeterminism.

Example 3.1.4. $L_5 = \{a^ib^j c^k \mid i = j \text{ or } i = k\}$.

PDA M_5 recognizing L_5 is shown in Figure 3.7.

This is the union of languages $L_6 = \{a^ib^j c^k \mid i, k \geq 0\}$ and $L_7 = \{a^ib^j c^i \mid i, j \geq 0\}$, each of which is similar to L_2. M_5, the PDA recognizing L_5 uses submachines to recognize each of L_6 and L_7. M_5’s first move from its start vertex is to traverse (Push $\$)-edges to the start vertices of the submachines. The net effect is that M_5 recognizes the union of the languages recognized by the submachines. As the submachines are similar to M_2 they are not explained further.
3.1. PUSHDOWN AUTOMATA

Figure 3.6: PDA M_4 recognizing $L_4 = \{ww^R \mid w \in \{a,b\}^*\}$. Z denotes string z in capital letters.

Figure 3.7: PDA M_5 recognizing $L_5 = \{a^i b^j c^k \mid i = j \text{ or } i = k\}$. Z denotes string z in capital letters.
3.2 Closure Properties

Lemma 3.2.1. Let A and B be languages recognized by PDAs M_A and M_B, respectively. Then $A \cup B$ is also recognized by a PDA called $M_{A \cup B}$.

Proof. The graph of $M_{A \cup B}$ consists of the graphs of M_A and M_B plus a new start vertex $\text{start}_{A \cup B}$, which is joined by λ-edges to the start vertices start_A and start_B of M_A and M_B, respectively. Its final vertices are the final vertices of M_A and M_B. The graph is shown in figure 3.8.

While it is clear that $L(M_{A \cup B}) = L(M_A) \cup L(M_B)$, we present the argument for completeness.

First, we show that $L(M_{A \cup B}) \subseteq L(M_A) \cup L(M_B)$. Suppose that $w \in L(M_{A \cup B})$. Then there is a w-recognizing computation path from $\text{start}_{A \cup B}$ to a final vertex f. If f lies in M_A, then removing the first edge of P leaves a path P' from start_A to f. Further, at the start of P', the stack is empty and nothing has been read, so P' is a w-recognizing path in M_A. That is, $w \in L(M_A)$. Similarly, if f lies in M_B, then $w \in L(M_B)$. Either way, $w \in L(M_A) \cup L(M_B)$.

Second, we show that $L(M_A) \cup L(M_B) \subseteq L(M_{A \cup B})$. Suppose that $w \in L(M_A)$. Then there is a w-recognizing computation path P' from start_A to a final vertex f in M_A. Adding the λ-edge $(\text{start}_{A \cup B}, \text{start}_A)$ to the beginning of P' creates a w-recognizing computation path in $M_{A \cup B}$, showing that $L(M_A) \subseteq L(M_{A \cup B})$. Similarly, if $w \in L(M_B)$, then $L(M_B) \subseteq L(M_{A \cup B})$.

Our next construction is simplified by the following technical lemma.
Lemma 3.2.2. Let PDA M recognize L. There is an L-recognizing PDA M' with the following properties: M' has only one final vertex, final$_{M'}$, and M' will always have an empty stack when it reaches final$_{M'}$.

Proof. The idea is quite simple. M' simulates M using a $\$-$shielded stack. When M’s computation is complete, M' moves to a new stack-emptying vertex, stack-empty, at which M' empties its stack of everything apart from the $\$-shield. To then move to final$_{M'}$, M' pops the $\$, thus ensuring it has an empty stack when it reaches final$_{M'}$. M' is illustrated in Figure 3.9. More precisely, M' consists of the graph of M plus three new vertices; start$_{M'}$, stack-empty, and final$_{M'}$. The following edges are also added: (start$_{M'}$, start$_M$) labeled Push $\$, λ-edges from each of M’s final vertices to stack-empty, self-loops (stack-empty, stack-empty) labeled Pop X for each $X \in \Gamma$, where Γ is M’s stack alphabet (so $\neq X$), and edge (stack-empty, final$_{M'}$) labeled Pop $\$.

It is clear that $L(M) = L(M')$. Nonetheless, we present the argument for completeness.

First, we show that $L(M') \subseteq L(M)$. Let $w \in L(M')$. Let P' be a w-recognizing path in M' and let f be the final vertex of M preceding stack-empty on the path P'. Removing the first edge in P' and every edge including and after $(f, \text{stack-empty})$, leaves a path P which is a w-recognizing path in M. Thus $L(M') \subseteq L(M)$.

Now we show $L(M) \subseteq L(M')$. Let $w \in L(M)$ and let P be a w-recognizing path in M. Suppose that P ends with string s on the stack at final vertex f. We add the edges (start$_{M'}$, start$_M$), $(f, \text{stack-empty})$, $|s|$ self-loops at stack-empty, and (stack-empty, final$_{M'}$) to P, yielding path P' in M'. By choosing the self-loops to be labeled with the characters of s^R in this order, we cause P' to be a w-recognizing path in M'. Thus $L(M) \subseteq L(M')$. □

Lemma 3.2.3. Let A and B be languages recognized by PDAS M_A and M_B, respectively. Then $A \circ B$ is also recognized by a PDA called $M_{A \circ B}$.

Proof. Let M_A and M_B be PDAs recognizing A and B, respectively, where they each have just one final vertex that can be reached only with an empty stack.

$M_{A \circ B}$ consists of M_A, M_B plus one λ-edge (final$_A$, start$_B$). Its start vertex is start$_A$ and its final vertex is final$_B$.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{Fig3_9}
\caption{PDA M' for Lemma 3.2.2.}
\end{figure}
To see that \(L(M_{A \circ B}) = A \circ B \) is straightforward.

First, we show that \(L(M_{A \circ B}) \subseteq A \circ B \). So suppose that \(w \in L(M_{A \circ B}) \). Then there is a \(w \)-recognizing path \(P \) in \(M_{A \circ B} \); \(P \) is formed from a path \(P_A \) in \(M_A \) going from \(\text{start}_A \) to \(\text{final}_A \) (and which therefore ends with an empty stack), \(\lambda \)-edge \((\text{final}_A, \text{start}_B) \), and a path \(P_B \) in \(M_B \) starting from \(\text{start}_B \) with an empty stack and going to \(\text{final}_B \). Let \(u \) be the sequence of reads labeling \(P_A \) and \(v \) those labeling \(P_B \). It follows that \(P_A \) is \(u \)-recognizing, and \(P_B \) is \(v \)-recognizing (see Figure 3.10) and thus \(u \in A \) and \(v \in B \). In addition, \(w = u\lambda v = uv \)

\[
M_{A \circ B}:
\begin{align*}
M_A: & \quad \text{Read } \lambda \\
\text{start}_A & \quad \text{--} \quad \text{Read } \lambda \\
& \quad \text{start}_B
\end{align*}
\]

which implies that \(w = uv \in A \circ B \).

Next, we show that \(A \circ B \subseteq L(M_{A \circ B}) \). So suppose that \(w = uv \in A \circ B \), where \(u \in A \) and \(v \in B \). then there is a \(u \)-recognizing path \(P_A \) in \(M_A \) and a \(v \)-recognizing path \(P_B \) in \(M_B \). We argue that the following path \(P \) is \(w \)-recognizing: \(P_A \) followed by the \(\lambda \)-edge \((\text{final}_A, \text{start}_B) \), followed by \(P_B \). Note that the stack is empty when at node \(\text{final}_A \) by construction and hence it is also empty at node \(\text{start}_B \). Consequently, computation path \(P \) in \(M_{A \circ B} \) recognizes \(u\lambda v = uv = w \), as claimed. It follows that \(w = uv \in L(M_{A \circ B}) \).

\[\square\]

Lemma 3.2.4. Suppose that \(L \) is recognized by PDA \(M_L \) and suppose that \(R \) is a regular language. Then \(L \cap R \) is recognized by a PDA called \(M_{L \cap R} \).

Proof. Let \(M_L = (\Sigma, \Gamma_L, \text{V}_L, \text{start}_L, F_L, \delta_L) \) and let \(R \) be recognized by DFA \(M_R = (\Sigma, \text{V}_R, \text{start}_R, F_R, \delta_R) \). We will construct \(M_{L \cap R} \). The vertices of \(M_{L \cap R} \) will be 2-tuples, the first component corresponding to a vertex of \(M_L \) and the second component to a vertex of \(M_R \). The computation of \(M_{L \cap R} \), when looking at the first components along with the stack will be exactly the computation of \(M_L \), and when looking at the second components, but without the stack, it will be exactly the computation of \(M_R \). This leads to the following edges in \(M_{L \cap R} \).

1. If \(M_L \) has an edge \((u_L, v_L)\) with label \((\text{Pop } A, \text{Read } b, \text{Push } C)\) and \(M_R \) has an edge \((u_R, v_R)\) with label \(b \), then \(M_{L \cap R} \) has an edge \(((u_L, u_R), (v_L, v_R))\) with label \((\text{Pop } A, \text{Read } b, \text{Push } C)\).

2. If \(M_L \) has an edge \((u_L, v_L)\) with label \((\text{Pop } A, \text{Read } \lambda, \text{Push } C)\) then \(M_{L \cap R} \) has an edge \(((u_L, u_R), (v_L, u_R))\) with label \((\text{Pop } A, \text{Read } \lambda, \text{Push } C)\) for every \(u_R \in V_R \).

The start vertex for \(M_{L \cap R} \) is \((\text{start}_L, \text{start}_R)\) and its set of final vertices is \(F_L \times F_R \), the pairs of final vertices, one from \(M_L \) and one from \(M_R \), respectively.
Assertion. $M_{L \cap R}$ can reach vertex (v_L, v_R) on input w if and only if M_L can reach vertex v_L and M_R can reach vertex v_R on input w.

Next, we argue that the assertion is true. For suppose that on input w, $M_{L \cap R}$ can reach vertex (v_L, v_R) by computation path $P_{L \cap R}$. If we consider the first components of the vertices in $P_{L \cap R}$, we see that it is a computation path of M_L on input w reaching vertex v_L. Likewise, if we consider the second components of the vertices of $M_{L \cap R}$, we obtain a path P'_R. The only difficulty is that this path may contain repetitions of a vertex u_R corresponding to reads of λ by $M_{L \cap R}$. Eliminating such repetitions creates a path P_R in M_R reaching v_R and having the same label w as path P'_R.

Conversely, suppose that M_L can reach v_L by computation path P_L and M_R can reach v_R by computation path P_R. Combining these paths, with care, gives a computation path P which reaches (v_L, v_R) on input w. We proceed as follows. The first vertex is $(\text{start}_L, \text{start}_R)$. Then we traverse P_L and P_R in tandem. Either the next edges in P_L and P_R are both labeled by a Read b (simply a b on P_R) in which case we use Rule (1) above to give the edge to add to P, or the next edge on P_L is labeled by Read λ (together with a Pop and a Push possibly) and then we use Rule (2) to give the edge to add to P. In the first case we advance one edge on both P_L and P_R, in the second case we only advance on P_L. Clearly, the path ends at vertex (v_L, v_R) on input w.

It is now easy to see that $L(M_{L \cap R}) = L \cap R$. For on input w, $M_{L \cap R}$ can reach a final vertex $v \in F = F_L \times F_R$ if and only if on input w, M_L reaches a vertex $v_L \in F_L$ and M_R reaches a vertex $v_R \in F_R$. That is, $w \in L(M_{L \cap R})$ if and only if $w \in L(M_L) = L$ and $w \in L(M_R) = R$, or in other words $w \in L(M_{L \cap R})$ if and only if $w \in L \cap R$.

Exercise. Show that if A is recognized by pda M_A then there is a pda M_{A^*} recognizing A^*.

3.3 Context Free Languages

Context Free Languages (CFLs) provide a way of specifying certain recursively defined languages. Let’s begin by giving a recursive method for generating integers in decimal form. We will call this representation of integers decimal strings. A decimal string is defined to be either a single digit (one of 0–9) or a single digit followed by another decimal string. This can be expressed more succinctly as follows.

\[
\langle\text{decimal string}\rangle \rightarrow \langle\text{digit}\rangle \mid \langle\text{digit}\rangle\langle\text{decimal string}\rangle \quad (3.1)
\]
\[
\langle\text{digit}\rangle \rightarrow 0 \mid 1 \mid 2 \mid \cdots \mid 9
\]

We can also view this as providing a way of generating decimal strings. To generate a particular decimal string we perform a series of replacements or substitutions starting from
the “variable” \langle \text{decimal string} \rangle. The sequence of replacements generating 147 is shown below.

\[
\begin{align*}
\langle \text{decimal string} \rangle & \Rightarrow \langle \text{digit} \rangle \langle \text{decimal string} \rangle \\
& \Rightarrow 1 \langle \text{decimal string} \rangle \\
& \Rightarrow 1 \langle \text{digit} \rangle \langle \text{decimal string} \rangle \\
& \Rightarrow 14 \langle \text{decimal string} \rangle \\
& \Rightarrow 14 \langle \text{digit} \rangle \\
& \Rightarrow 147
\end{align*}
\]

We write \(\sigma \Rightarrow \tau \) if the string \(\tau \) is the result of a single replacement in \(\sigma \). The possible replacements are those given in (3.1). Each replacement takes one occurrence of an item on the lefthand side of an arrow and replaces it with one of the items on the right hand side; these are the items separated by vertical bars. Specifically, the possible replacements are to take one occurrence of one of:

- \langle \text{decimal string} \rangle and replaces it with one of \langle \text{digit} \rangle or the sequence \langle \text{digit} \rangle \langle \text{decimal string} \rangle.
- \langle \text{digit} \rangle and replaces it with one of 0–9.

An easier way to understand this is by viewing the generation using a tree, called a derivation or parse tree, as shown in Figure 3.11. Clearly, were we patient enough, in principle we could generate any number.

The above generation rules are relatively simple. Let’s look at the slightly more-elaborate example of arithmetic expressions such as \(x + x \times x \) or \((x + x) \times x \). For simplicity, we limit the expressions to those built from a single variable \(x \), the “+” and “\times” operators, and
3.3. CONTEXT FREE LANGUAGES

parentheses. We also would like the generation rules to follow the precedence order of the operators “+” and “×”, in a sense that will become clear.

The generation rules, being recursive, generate arithmetic expressions top-down. Let’s use the example \(x + x \times x \) as motivation. To guide us, it is helpful to look at the expression tree representation, shown in Figure 3.12a. The root of the tree holds the operator “+”;

\[
\begin{align*}
\langle \text{expr} \rangle & \rightarrow \langle \text{expr} \rangle + \langle \text{term} \rangle | \langle \text{term} \rangle \\
\langle \text{term} \rangle & \rightarrow \langle \text{term} \rangle \times \langle \text{factor} \rangle | \langle \text{factor} \rangle
\end{align*}
\]

![Figure 3.12: Parse Tree Generating \(x + x \times x \).](image)

correspondingly, the first substitution we apply needs to create a “+”; the remaining parts of the expression will then be generated recursively. This is implemented with the following variables: \(\langle \text{expr} \rangle \), which can generate any arithmetic expression; \(\langle \text{term} \rangle \), which can generate any arithmetic expression whose top level operator is times (\(\times \)) or matched parentheses (“(” and “)’’); and \(\langle \text{factor} \rangle \), which can generate any arithmetic expression whose top level operator is a pair of matched parentheses. This organization is used to enforce the usual operator precedence. This leads us to the following substitution rules:

- \(\langle \text{expr} \rangle \rightarrow \langle \text{expr} \rangle + \langle \text{term} \rangle | \langle \text{term} \rangle \).

This rule implies that the top-level additions are generated in right to left order and hence performed in left to right order (for the expression generated by the left \(\langle \text{expr} \rangle \) is evaluated before being added to the expression generated by the \(\langle \text{term} \rangle \) to its right). So eventually the initial \(\langle \text{expr} \rangle \) is replaced by \(\langle \text{term} \rangle + \langle \text{term} \rangle + \cdots + \langle \text{term} \rangle \), each term being an operand for the “+” operator. If there is no addition, \(\langle \text{expr} \rangle \) is simply replaced by \(\langle \text{term} \rangle \).

- \(\langle \text{term} \rangle \rightarrow \langle \text{term} \rangle \times \langle \text{factor} \rangle | \langle \text{factor} \rangle \).

Similarly, this rule implies that the multiplications are performed in left to right order. Eventually the initial \(\langle \text{term} \rangle \) is replaced by \(\langle \text{factor} \rangle \times \langle \text{factor} \rangle \times \cdots \times \langle \text{factor} \rangle \), each
factor being an operand to the “×” orator. If there is no multiplication, \(\langle\text{term}\rangle\) is simply replaced by \(\langle\text{factor}\rangle\).

- \(\langle\text{factor}\rangle \rightarrow x \mid (\text{expr})\).

Since “×” has the highest precedence each of its operands must be either a simple variable \((x)\) or a parenthesized expression, which is what we have here.

The derivation tree for the example of Figure 3.12a is shown in Figure 3.12b. Note that the left-to-right order of evaluation is an arbitrary choice for the “+” and the “×” operators, but were we to introduce the “−” and “÷” operators it ceases to be arbitrary; left-to-right is then the correct rule.

Let’s look at one more example.

Example 3.3.1. \(L = \{a^ib^i \mid i \geq 0\}\). Here are a set of rules to generate the strings in \(L\), to generate \(L\) for short, starting from the term \(\langle\text{Balanced}\rangle\).

\[
\langle\text{Balanced}\rangle \Rightarrow \lambda \mid a\langle\text{Balanced}\rangle b.
\]

Notice how a string \(s \in L\) is generated: from the outside in. First the outermost \(a\) and \(b\) are created, together with a \(\langle\text{Balanced}\rangle\) term between them; this \(\langle\text{Balanced}\rangle\) term will be used to generate \(a^{i-1}b^{i-1}\). Then the second outermost \(a\) and \(b\) are generated, etc. The bottom of the recursion, the base case, is the generation of string \(\lambda\).

Now we are ready to define *Context Free Grammars* (CFGs), \(G\), (which have nothing to do with graphs). A Context Free Grammar has four parts:

1. A set \(V\) of variables (such as \(\langle\text{factor}\rangle\) or \(\langle\text{Balanced}\rangle\)); note that \(V\) is not a vertex set here.

 The individual variables are usually written using single capital letters, often from the end of the alphabet, e.g. \(X, Y, Z\); no angle brackets are used here. This has little mnemonic value, but it is easier to write. If you do want to use longer variable names, I advise using the angle brackets to delimit them.

2. An alphabet \(T\) of terminals: these are the characters used to write the strings being generated. Usually, they are written with small letters.

3. \(S \in V\) is the start variable, the variable from which the string generation begins.

4. A set of rules \(R\). Each rule has the form \(X \rightarrow \sigma\), where \(X \in V\) is a variable and \(\sigma \in (T \cup V)^*\) is a string of variables and terminals, which could be \(\lambda\), the empty string.

 If we have several rules with left the same lefthand side, for example \(X \rightarrow \sigma_1, X \rightarrow \sigma_2, \cdots, X \rightarrow \sigma_k\), they can be written as \(X \rightarrow \sigma_1 \mid \sigma_2 \mid \cdots \mid \sigma_k\) for short. The meaning is that an occurrence of \(X\) in a generated string can be replaced by any one of \(\sigma_1, \sigma_2, \cdots, \sigma_k\). Different occurrences of \(X\) can be replaced by distinct \(\sigma_i\), of course.
The generation of a string proceeds by a series of replacements which start from the string \(s_0 = S \), and which, for \(1 \leq i \leq k \), obtain \(s_i \) from \(s_{i-1} \) by replacing some variable \(X \) in \(s_{i-1} \) by one of the replacements \(\sigma_1, \sigma_2, \ldots, \sigma_k \) for \(X \), as provided by the rule collection \(R \). We will write this as

\[
S = s_0 \Rightarrow s_1 \Rightarrow s_2 \Rightarrow \cdots \Rightarrow s_k \text{ or } S \Rightarrow^* s_k \text{ for short.}
\]

The language generated by grammar \(G \), \(L(G) \), is the set of strings of terminals that can be generated from \(G \)'s start variable \(S \):

\[
L(G) = \{ w \mid S \Rightarrow^* w \text{ and } w \in T^* \}.
\]

Example 3.3.2. Grammar \(G_2 \), the grammar generating the language of properly nested parentheses. It has:

- Variable set: \(\{ S \} \).
- Terminal set: \(\{ (, \} \).
- Rules: \(S \Rightarrow (S) \mid SS \mid \lambda \).
- Start variable: \(S \).

Here are some example derivations.

\[
S \Rightarrow SS \Rightarrow (S)S \Rightarrow ()S \Rightarrow ()(S) \Rightarrow ()((S)) \Rightarrow ()().
\]

\[
S \Rightarrow (S) \Rightarrow (SS) \Rightarrow ((S))S \Rightarrow ()(S) \Rightarrow ()((S)) \Rightarrow ()()\).
\]

3.3.1 Closure Properties

Lemma 3.3.3. Let \(G_A \) and \(G_B \) be CFGs generating languages \(A \) and \(B \), respectively. Then there are CFGs generating \(A \cup B \), \(A \circ B \), \(A^* \).

Proof. Let \(G_A = (V_A, \Sigma_A, R_A, S_A) \) and \(G_B = (V_B, \Sigma_B, R_B, S_B) \). By renaming variables if needed, we can ensure that \(V_A \) and \(V_B \) are disjoint.

First, we show that \(A \cup B \) is generated by the following grammar \(G_{A \cup B} \).

\(G_{A \cup B} \) has variable set \(\{ S_{A \cup B} \} \cup V_A \cup V_B \), terminal set \(T_A \cup T_B \), start variable \(S_{A \cup B} \), rules \(R_A \cup R_B \) plus the rules \(S_{A \cup B} \rightarrow S_A \mid S_B \).

To generate a string \(w \in A \), \(G_{A \cup B} \) performs a derivation with first step \(S_{A \cup B} \Rightarrow S_A \), and then follows this with a derivation of \(w \) in \(G_A \): \(S_A \Rightarrow^* w \). So if \(w \in A \), \(w \in L(G_{A \cup B}) \).

Likewise, if \(w \in B \), then \(w \in L(G_{A \cup B}) \) also. Thus \(A \cup B \subseteq L(G_{A \cup B}) \).

To show \(L(G_{A \cup B}) \subseteq A \cup B \) is also straightforward. For if \(w \in L(G_{A \cup B}) \), then there is a derivation \(S_{A \cup B} \Rightarrow^* w \). Its first step is either \(S_{A \cup B} \Rightarrow S_A \) or \(S_{A \cup B} \Rightarrow S_B \). Suppose it is \(S_{A \cup B} \Rightarrow S_A \). Then the remainder of the derivation is \(S_A \Rightarrow^* w \); this says that \(w \in A \).

Similarly, if the first step is \(S_{A \cup B} \Rightarrow S_B \), then \(w \in B \). Thus \(L(G_{A \cup B}) \subseteq A \cup B \).

Next, we show that \(A \circ B \) is generated by the following grammar \(G_{A \circ B} \).

\(G_{A \circ B} \) has variable set \(S_{A \circ B} \cup V_A \cup V_B \), terminal set \(T_A \cup T_B \), start variable \(S_{A \circ B} \), and rules \(R_A \cup R_B \) plus the rule \(S_{A \circ B} \rightarrow S_A S_B \).
If \(w \in A \circ B \), then \(w = uv \) for some \(u \in A \) and \(v \in B \). So to generate \(w \), \(G_{A \circ B} \) performs the following derivation. The first step is \(S_{A \circ B} \Rightarrow S_A S_B \); this is followed by a derivation \(S_A \Rightarrow^* u \), which yields the string \(uS_B \); this is then followed by a derivation \(S_B \Rightarrow^* v \), which yields the string \(uv = w \). Thus \(A \circ B \subseteq L(G_{A \circ B}) \).

To show \(L(G_{A \circ B}) \subseteq A \circ B \) is also straightforward. For if \(w \in L(G_{A \circ B}) \), then there is a derivation \(S_{A \circ B} \Rightarrow^* w \). The first step can only be \(S_{A \circ B} \Rightarrow S_A S_B \). Let \(u \) be the string of terminals derived from \(S_A \), and \(v \) the string of terminals derived from \(S_B \), in the full derivation. So \(uv = w \), \(u \in A \) and \(v \in B \). Thus \(L(G_{A \circ B}) \subseteq A \circ B \).

The fact that there is a grammar \(G_A \) generating \(A^* \) we leave as an exercise for the reader.

Lemma 3.3.4. \(\{\lambda\} \), \(\phi \), \(\{a\} \) are all context free languages.

Proof. The grammar with the single rule \(S \rightarrow \lambda \) generates \(\{\lambda\} \), the grammar with no rules generates \(\phi \), and the grammar with the single rule \(S \rightarrow a \) generates \(\{a\} \), where, in each case, \(S \) is the start variable.

Corollary 3.3.5. All regular languages have CFGs.

Proof. It suffices to show that for any language represented by a regular expression \(r \) there is a CFG \(G_r \) generating the same language. This is done by means of a proof by induction on the number of operators in \(r \). As this is identical in structure to the proof of Lemma 2.4.1, the details are left to the reader.

3.4 Converting CFGs to Chomsky Normal Form (CNF)

A CNF grammar is a CFG with rules restricted as follows.

The right-hand side of a rule consists of:

i. Either a single terminal, e.g. \(A \rightarrow a \).

ii. Or two variables, e.g. \(A \rightarrow BC \).

iii. Or the rule \(S \rightarrow \lambda \), if \(\lambda \) is in the language.

iv. The start symbol \(S \) may appear only on the left-hand side of rules.

Given a CFG \(G \), we show how to convert it to a CNF grammar \(G' \) generating the same language.

We use a grammar \(G \) with the following rules as a running example.

\[
S \rightarrow ASA \mid aB; \ A \rightarrow B \mid S; \ B \rightarrow b \mid \lambda
\]

We proceed in a series of steps which gradually enforce the above CNF criteria; each step leaves the generated language unchanged.
3.4. CONVERTING CFGS TO CHOMSKY NORMAL FORM (CNF)

Step 1 For each terminal \(a \), we introduce a new variable, \(U_a \) say, add a rule \(U_a \to a \), and for each occurrence of \(a \) in a string of length 2 or more on the right-hand side of a rule, replace \(a \) by \(U_a \). Clearly, the generated language is unchanged.

Example: If we have the rule \(A \to Ba \), this is replaced by \(U_a \to a \), \(A \to BU_a \).

This ensures that terminals on the right-hand sides of rules obey criteria (i) above.

This step changes our example grammar \(G \) to have the rules:

\[
S \to ASA \mid U_aB; \ A \to B \mid S; \ B \to b \mid \lambda; \ U_a \to a
\]

Step 2 For each rule with 3 or more variables on the right-hand side, we replace it with a new collection of rules obeying criteria (ii) above. Suppose there is a rule \(U \to W_1W_2 \cdots W_k \), for some \(k \geq 3 \). Then we create new variables \(X_2, X_3, \ldots, X_{k-1} \), and replace the prior rule with the rules:

\[
U \to W_1X_2; \ X_2 \to W_2X_3; \ \cdots \ ; \ X_{k-2} \to W_{k-2}X_{k-1}; \ X_{k-1} \to W_{k-1}W_k
\]

Clearly, the use of the new rules one after another, which is the only way they can be used, has the same effect as using the old rule \(U \to W_1W_2 \cdots W_k \). Thus the generated language is unchanged.

This ensures, for criteria (ii) above, that no right-hand side has more than 2 variables. We have yet to eliminate right-hand sides of one variable or of the form \(\lambda \).

This step changes our example grammar \(G \) to have the rules:

\[
S \to AX \mid U_aB; \ X \to SA; \ A \to B \mid S; \ B \to b \mid \lambda; \ U_a \to a
\]

Step 3 We replace each occurrence of the start symbol \(S \) with the variable \(S' \) and add the rule \(S \to S' \). This ensures criteria (iv) above.

This step changes our example grammar \(G \) to have the rules:

\[
S \to S'; \ S' \to AX \mid U_aB; \ X \to S'A; \ A \to B \mid S'; \ B \to b \mid \lambda; \ U_a \to a
\]

Step 4 This step removes rules of the form \(A \to \lambda \). To understand what needs to be done it is helpful to consider a derivation tree for a string \(w \). If the tree use a rule of the form \(A \to \lambda \), we label the resulting leaf with \(\lambda \). We will be focusing on subtrees in which all the leaves have \(\lambda \)-labels; we call such subtrees \(\lambda \)-subtrees. Now imagine pruning all the \(\lambda \)-subtrees, creating a reduced derivation tree for \(w \). Our goal is to create a modified grammar which can form the reduced derivation tree. A derivation tree, and its reduced form is shown in Figure 3.13.

We need to change the grammar as follows. Whenever there is a rule \(A \to BC \) and \(B \) can generate \(\lambda \), we need to add the rule \(A \to C \) to the grammar (note that this does not allow any new strings to be generated); similarly, if there is is rule \(A \to DE \) and \(E \) can generate \(\lambda \), we need to add the rule \(A \to D \); likewise, if there is a rule \(A \to BB \) and \(B \) can generate \(\lambda \), we need to add the rule \(A \to B \).
Next, we remove all rules of the form $A \rightarrow \lambda$. We argue that any previously generatable string $w \neq \lambda$ remains generatable. For given a derivation tree for w using the old rules, using the new rules we can create the reduced derivation tree, which is a derivation tree for w in the new grammar. To see this, consider a maximal sized λ-subtree (that is a λ-subtree whose parent is not part of a λ-subtree). Then its root v must have a sibling w and parent u (these are the names of nodes, not strings). Suppose that u has variable label A, v has label B and w has label C. Then node v was generated by applying either the rule $A \rightarrow BC$ or the rule $A \rightarrow CB$ at node u (depending on whether v is the left or right child of u). In the reduced tree, applying the rule $A \rightarrow C$ generates w and omits v and its subtree.

Finally, we take care of the case that, under the old rules, S can generate λ. In this situation, we simply add the rule $S \rightarrow \lambda$, which then allows λ to be generated by the new rules also.

To find the variables that can generate λ, we use an iterative rule reduction procedure. First, we make a copy of all the rules. We then create reduced rules by removing from the right-hand sides all instances of variables A for which there is a rule $A \rightarrow \lambda$. We keep iterating this procedure so long as it creates new reduced rules with λ on the right-hand side.

For our example grammar we start with the rules

$$
S \rightarrow S'; \ S' \rightarrow AX \ | \ U_aB; \ X \rightarrow S'A; \ A \rightarrow B \ | \ S'; \ B \rightarrow b \ | \ \lambda; \ U_a \rightarrow a
$$

As $B \rightarrow \lambda$ is a rule, we obtain the reduced rules

$$
S \rightarrow S'; \ S' \rightarrow AX \ | \ U_aB \ | \ U_a; \ X \rightarrow S'A; \ A \rightarrow B \ | \ \lambda \ | \ S'; \ B \rightarrow b \ | \ \lambda; \ U_a \rightarrow a
$$

As $A \rightarrow \lambda$ is now a rule, we next obtain

$$
S \rightarrow S'; \ S' \rightarrow AX \ | \ X \ | \ U_aB \ | \ U_a; \ X \rightarrow S'A \ | \ S'; \ A \rightarrow B \ | \ \lambda \ | \ S'; \ B \rightarrow b \ | \ \lambda; \ U_a \rightarrow a
$$
3.4. CONVERTING CFGS TO CHOMSKY NORMAL FORM (CNF)

There are no new rules with λ on the right-hand side. So the procedure is now complete and this yields the new collection of rules:

$$S \rightarrow S'; \; S' \rightarrow AX \mid X \mid U_aB \mid U_a; \; X \rightarrow S'A \mid S'; \; A \rightarrow B \mid S'; \; B \rightarrow b; \; U_a \rightarrow a$$

An efficient implementation keeps track of the lengths of each right-hand side, and a list of the locations of each variable; the new rules with λ on the right-hand side are those which have newly obtained length 0. It is not hard to have this procedure run in time linear in the sum of the lengths of the rules.

Step 5 This step removes rules of the form $A \rightarrow B$, which we call unit rules.

What is needed is to replace derivations of the form $A_1 \Rightarrow A_2 \Rightarrow \cdots \Rightarrow A_k \Rightarrow BC$ with a new derivation of the form $A \Rightarrow BC$; this is achieved with a new rule $A \rightarrow BC$. Similarly, derivations of the form $A_1 \Rightarrow A_2 \Rightarrow \cdots \Rightarrow A_k \Rightarrow a$ need to be replaced with a new derivation of the form $A \Rightarrow a$; this is achieved with a new rule $A \rightarrow a$. We proceed in two substeps.

Substep 5.1. This substep identifies variables that are equivalent, i.e. collections B_1, B_2, \ldots, B_l such that for each pair B_i and B_j, $1 \leq i < j \leq l$, B_i can generate B_j, and B_j can generate B_i. We then replace all of B_1, B_2, \ldots, B_l with a single variable, B_1 say. Clearly, this does not change the language that is generated.

To do this we form a directed graph based on the unit rules. For each variable, we create a vertex in the graph, and for each unit rule $A \rightarrow B$ we create an edge (A, B). Figure 3.14(a) shows the graph for our example grammar. The vertices in each strong component of the graph correspond to a collection of equivalent variables.

For the example grammar, the one non-trivial strong component contains the variables $\{S', X\}$. We replace S' with X yielding the rules:

$$S \rightarrow X; \; X \rightarrow AX \mid X \mid U_aB \mid U_a; \; X \rightarrow XA \mid X; \; A \rightarrow B \mid X; \; B \rightarrow b; \; U_a \rightarrow a$$

We can remove the useless rule $X \rightarrow X$ also.

Substep 5.2. In this substep, we add rules $A \rightarrow BC$ and $A \rightarrow a$, as described above, so as to shortcut derivations that were using unit rules.
To this end, we use the graph formed from the unit rules remaining after Substep 5.1, which we call the reduced graph. It is readily seen that this is an acyclic graph.

In processing \(A \to B \), we will add appropriate non-unit rules that allow the shortcutting of all uses of \(A \to B \), and hence allow the rule \(A \to B \) to be discarded. If there are no unit rules with \(B \) on the left-hand side it suffices to add a rule \(A \to CD \) for each rule \(B \to CD \), and a rule \(A \to b \) for each rule \(B \to b \).

To be able to do this, we just have to process the unit rules in a suitable order. Recall that each unit rule is associated with a distinct edge in the reduced graph. As this graph will be used to determine the order in which to process the unit rules, it will be convenient to write “processing an edge” when we mean “processing the associated rule”. It suffices to ensure that each edge is processed only after any descendant edges have been processed. So it suffices to start at vertices with no outedges and to work backward through the graph. This is called a reverse topological traversal. (This traversal can be implemented via a depth first search on the acyclic reduced graph.)

For each traversed edge \((E,F) \), which corresponds to a rule \(E \to F \), for each rule \(F \to CD \), we add the rule \(E \to CD \), and for each rule \(F \to f \), we add the rule \(E \to f \); then we remove the rule \(E \to F \). Any derivation which had used the rules \(E \to F \) followed by \(F \to CD \) or \(F \to f \) can now use the rule \(E \to CD \) or \(E \to f \) instead. So the same strings are derived with the new set of rules.

This step changes our example grammar \(G \) as follows (see Figure 3.14(b)):

First, we traverse edge \((A,B) \). This changes the rules as follows:
- Add \(A \to b \)
- Remove \(A \to B \).

Next, we traverse edge \((X,U_a) \). This changes the rules as follows:
- Add \(X \to a \)
- Remove \(X \to U_a \).

Now, we traverse edge \((A,X) \). This changes the rules as follows:
- Add \(A \to AX \midXA \mid U_aB \mid a \).
- Remove \(A \to X \).

Finally, we traverse edge \((S,X) \). This changes the rules as follows:
- Add \(S \to AX \midXA \mid U_aB \mid a \).
- Remove \(S \to X \).

The net effect is that our grammar now has the rules:

\[
S \to AX \mid U_aB \mid AX \mid a ; \ X \to AX \mid U_aB \mid AX \mid a ; \ A \to b \mid AX \mid U_aB \mid AX \mid a ; \ B \to b ; \ U_a \to a
\]

Steps 4 and 5 complete the attainment of criteria (ii), and thereby create a CNF grammar generating the same language as the original grammar.

3.5 Showing Languages are not Context Free

We will do this with the help of a Pumping Lemma for Context Free Languages. To prove this lemma we need two results relating the height of derivation trees and the length of the
3.5. SHOWING LANGUAGES ARE NOT CONTEXT FREE

derived strings, when using CNF grammars.

Lemma 3.5.1. Let T be a derivation tree of height h for string $w \neq \lambda$ using CNF grammar G. Then $w \leq 2^{h-1}$.

Proof. The result is easily confirmed by strong induction on h. Recall that the height of the tree is the length, in edges, of the longest root to leaf path.

The base case, $h = 1$, occurs with a tree of two nodes, the root and a leaf child. Here, w is the one terminal character labeling the leaf, so $|w| = 1 = 2^{h-1}$; thus the claim is true in this case.

Suppose that the result is true for trees of height k or less. We show that it is also true for trees of height $k+1$. To see this, note that the root of T has two children, each one being the root of a subtree of height k or less. Thus, by the inductive hypothesis, each subtree derives a string of length at most 2^{k-1}, yielding that T derives a string of length at most $2 \cdot 2^{k-1} = 2^k$. This shows the inductive claim for $h = k + 1$.

It follows that the result holds for all $h \geq 1$. □

Corollary 3.5.2. Let w be the string derived by derivation tree T using CNF grammar G. If $|w| > 2^{h-1}$, then T has height at least $h + 1$ and hence has a root to leaf path with at least $h + 1$ edges and at least $h + 1$ internal nodes.

Now let’s consider the language $L = \{a^ib^ic^i \mid i \geq 0\}$ which is not a CFL as we shall proceed to show. Let’s suppose for a contradiction that L were a CFL. Then it would have a CNF grammar G, with m variables say. Let $p = 2^m$.

Let’s consider string $s = a^pb^pc^p \in L$, and look at the derivation tree T for s. As $|s| > 2^{m-1}$, by Corollary 3.5.2, T has a root to leaf path with at least $m + 1$ internal nodes. Let P be a longest such path. Each internal node on P is labeled by a variable, and as P has at least $m + 1$ internal nodes, some variable must be used at least twice.

Working up from the bottom of P, let c be the first node to repeat a variable label. So on the portion of P below c each variable is used at most once. The derivation tree is shown in Figure 3.15. Let d be the descendant of c on P having the same variable label as c, A say. Let w be the substring derived by the subtree rooted at d. Let vwx be the substring derived by the subtree rooted at c (so v, for example, is derived by the subtrees hanging from P to its left side on the portion of P starting at c and ending at d’s parent). Let $vwxy$ be the string derived by the whole tree.

Observation 1. The height of c is at most $m + 1$. Hence, by Lemma 3.5.1, $|vwx| \leq 2^m = p$. This follows because P is a longest root to leaf path and because no variable label is repeated on the path below node c.

Observation 2. Either $|v| \geq 1$ or $|x| \geq 1$ (or both). We abbreviate this as $|vx| \geq 1$.

For node c has two children, one on path P, and a second child, which we name e, that is not on path P. This is illustrated in Figure 3.16. Suppose that e is c’s right child. Let x_2 be the string derived by the subtree rooted at e. Then, as e is not a leaf, $|x_2| \geq 1$. Clearly x_2 is the right end portion of x (it could be that $x = x_2$); thus $|x| \geq 1$. Similarly if e is c’s left child, $|v| \geq 1$.
Figure 3.15: Derivation Tree for \(s \in L \).

Figure 3.16: Possible Locations of \(e \), the Off Path Child of node \(c \).
Let’s consider replicating the middle portion of the derivation tree, namely the wedge W formed by taking the subtree C rooted at c and removing the subtree D rooted at d, to create a derivation tree for a longer string, as shown in Figure 3.17. We can do this because the root of the wedge is labeled by A and hence W plus a nested subtree D is a legitimate replacement for subtree D. The resulting tree, with two copies of W, one nested inside the other, is a derivation tree for $uvvwxxy$. Thus $uvvwxxy \in L$.

Clearly, we could duplicate W more than once, or remove it entirely, showing that all the strings $uv^iwx^iy \in L$, for any integer $i \geq 0$.

Now let’s see why $uvvwxxy \notin L$. Note that we know that $|vx| \geq 1$ and $|vwx| \leq p$, by Observations 1 and 2. Further recall that $a^pb^pc^p = uvwxy$. As $|vwx| \leq p$, it is contained entirely in either one or two adjacent blocks of letters, as illustrated in Figure 3.18. Therefore,

$$
\begin{array}{ccc}
a^p & b^p & c^p \\
\end{array}
$$

Key: —— substring vwx, possible locations

Figure 3.18: Possible Locations of vwx in $a^pb^pc^p$.

when v and x are duplicated, as $|vx| \geq 1$, the number of occurrences of one or two of the characters increases, but not of all three. Consequently, in $uvvwxxy$ there are not equal numbers of a’s, b’s, and c’s, and so $uvvwxxy \notin L$.

We have shown both that $uvvwxxy \in L$ and $uvvwxxy \notin L$. This contradiction means that the original assumption (that L is a CFL) is mistaken. We conclude that L is not a CFL.

We are now ready to prove the Pumping Lemma for Context Free Languages, which will provide a tool to show many languages are not Context Free, in the style of the above
Lemma 3.5.3. (Pumping Lemma for Context Free Languages.) Let L be a Context Free Language. Then there is a constant $p = p_L$ such that if $s \in L$ and $|s| \geq p$ then s is pumpable, that is s can be written in the form $s = uvwxy$ with

1. $|vx| \geq 1$.
2. $|vwx| \leq p$.
3. For every integer i, $i \geq 0$, $uv^iwx^iy \in L$.

Proof. Let G be a CNF grammar for L, with m variables say. Let $p = 2^m$. Let $s \in L$, where $|s| \geq p$, and let T be a derivation tree for s. As $|s| > 2^{m-1}$, by Corollary 3.5.2, T has a root to leaf path with at least $m + 1$ internal nodes. Let P be a longest such path. Each internal node on P is labeled by a variable, and as P has at least $m + 1$ internal nodes, some variable must be used at least twice.

Working up from the bottom of P, let c be the first node to repeat a variable label. So on the portion of P below c each variable is used at most once. Thus c has height at most $m + 1$. The derivation tree is shown in Figure 3.15. Let d be the descendant of c on P having the same variable label as c, A say. Let w be the substring derived by the subtree rooted at d. Let vwx be the substring derived by the subtree rooted at c. Let $uvwx$ be the string derived by the whole tree.

By Observation 1, c has height at most $m + 1$; hence, by Lemma 3.5.1, vwx, the string c derives, has length at most $2^m = p$. This shows Property (2). Property (1) is shown in Observation 2, above.

Finally, we show property (3). Let’s replicate the middle portion of the derivation tree, namely the wedge W formed by taking the subtree C rooted at c and removing the subtree D rooted at d, to create a derivation tree for a longer string, as shown in Figure 3.17.

We can do this because the root of the wedge is labeled by A and hence W plus a nested subtree D is a legitimate replacement for subtree D. The resulting tree, with two copies of W, one nested inside the other, is a derivation tree for $uvvwx$. Thus $uvvwx \in L$.

Clearly, we could duplicate W more than once, or remove it entirely, showing that all the strings $uv^iwx^iy \in L$, for any integer $i \geq 0$.

Next, we demonstrate by example how to use the Pumping Lemma to show languages are not context free. The argument structure is identical to that used in applying the Pumping Lemma to regular languages.

Example 3.5.4. $J = \{ww \mid w \in \{a, b\}^*\}$. We will show that J is not context free.

Step 1. Suppose, for a contradiction, that J were context free. Then, by the Pumping Lemma, there is a constant $p = p_J$ such that for any $s \in J$ with $|s| \geq p$, s is pumpable.

Step 2. choose $s = a^{p+1}b^{p+1}a^{p+1}b^{p+1}$. Clearly $s \in J$ and $|s| \geq p$, so s is pumpable.
Step 3. As \(s \) is pumpable we can write \(s = uvwxy \) with \(|vwx| \leq p \), \(|vx| \geq 1\) and \(uv^iwx^iy \in J \) for all integers \(i \geq 0 \). Also, by condition (3) with \(i = 0 \), \(s' = uwy \in J \). We argue next that in fact \(s' \notin J \). As \(|vwx| \leq p\), \(vwx \) can overlap one or two adjacent blocks of characters in \(s \) but no more. Now, to obtain \(s' \) from \(s \), \(v \) and \(x \) are removed. This takes away characters from one or two adjacent blocks in \(s \), but at most \(p \) characters in all (as \(|vx| \leq p\)). Thus \(s' \) has four blocks of characters, with either one of the blocks of \(a \)'s shorter than the other, or one of the blocks of \(b \)'s shorter than the other, or possibly both of these. In every case \(s' \notin J \). We have shown that both \(s' \in J \) and \(s' \notin J \). This is a contradiction.

Step 4. The contradiction shows that the initial assumption was mistaken. Consequently, \(J \) is not context free.

Comment. Suppose, by way of example, that \(vwx \) overlaps the first two blocks of characters. It would be incorrect to assume that \(v \) is completely contained in the block of \(a \)'s and \(x \) in the block of \(b \)'s. Further, it may be that \(v = \lambda \) or \(x = \lambda \) (but not both). All you know is that \(|vwx| \leq p\) and that one of \(|v| \geq 1\) or \(|x| \geq 1\). Don’t assume more than this.

Example 3.5.5. \(K = \{a^ib^jck \mid i < j < k\} \). We show that \(K \) is not context free.

Step 1. Suppose, for a contradiction, that \(K \) were context free. Then, by the Pumping Lemma, there is a constant \(p = p_K \) such that for any \(s \in K \) with \(|s| \geq p \), \(s \) is pumpable.

Step 2. Choose \(s = a^ib^{p+1}c^{p+2} \). Clearly, \(s \in K \) and \(|s| \geq p \), so \(s \) is pumpable.

Step 3. As \(s \) is pumpable we can write \(s = uvwxy \) with \(|vwx| \leq p \), \(|vx| \geq 1\) and \(uv^iwx^iy \in K \) for all integers \(i \geq 0 \).

As \(|vwx| \leq p \), \(vwx \) can overlap one or two blocks of the characters in \(s \), but not all three. Our argument for obtaining a contradiction depends on the position of \(vwx \).

Case 1. \(vx \) does not overlap the block of \(c \)'s.

Then consider \(s' = uvwxy \). As \(s \) is pumpable, by Condition (3) with \(i = 2 \), \(s' \in L \). We argue next that in fact \(s' \notin K \). As \(v \) and \(x \) have been duplicated in \(s' \), the number of \(a \)'s or the number of \(b \)'s is larger than in \(s \) (or possibly both numbers are larger); but the number of \(c \)'s does not change. If the number of \(b \)'s has increased, then \(s' \) has at least as many \(b \)'s as \(c \)'s, and then \(s' \notin K \). Otherwise, the number of \(a \)'s increases, and the number of \(b \)'s is unchanged, so \(s' \) has at least as many \(a \)'s as \(b \)'s, and again \(s' \notin K \).

Case 2. \(vwx \) does not overlap the block of \(a \)'s.

Then consider \(s' = uwy \). Again, as \(s \) is pumpable, by Condition (3) with \(i = 0 \), \(s' \in s \). Again, we show that in fact \(s' \notin K \). To obtain \(s' \) from \(s \), the \(v \) and the \(x \) are removed. So in \(s' \) either the number of \(c \)'s is smaller than in \(s \), or the number of \(b \)'s is smaller (or both). But the number of \(a \)'s is unchanged. If the number of \(b \)'s is reduced, then \(s' \) has at least as many \(a \)'s as \(b \)'s, and so \(s' \notin K \). Otherwise, the number of \(c \)'s decreases and the number of \(b \)'s is unchanged; but then \(s' \) has at least as many \(b \)'s as \(c \)'s, and again \(s' \notin K \).

In either case, a pumped string \(s' \) has been shown to be both in \(K \) and not in \(K \). This is a contradiction.

Step 4. The contradiction shows that the initial assumption was mistaken. Consequently, \(K \) is not context free.
The following example uses the yet to be proven result that if \(L \) is context free and \(R \) is regular then \(L \cap R \) is also context free.

Example 3.5.6. \(H = \{ w \mid w \in \{a, b, c\}^* \text{ and } w \text{ has equal numbers of } a\text{'s, } b\text{'s and } c\text{'s} \} \).

Consider \(H \cap a^*b^*c^* = L = \{a^ib^ic^i \} \). If \(H \) were context free, then \(L \) would be context free too. But we have already seen that \(L \) is not context free. Consequently, \(H \) is not context free either.

This could also be shown directly by pumping on string \(s = a^pb^pc^p \).

When applying the Pumping Lemma, it seems a nuisance to have to handle the cases where one of \(v \) or \(x \) may be the empty string, and fortunately, we can prove a variant of the Pumping Lemma in which both \(|v| \geq 1 \) and \(|x| \geq 1 \).

Lemma 3.5.7. (Variant of the Pumping Lemma for Context Free Languages.) Let \(L \) be a Context Free Language. Then there is a constant \(p = p_L \) such that if \(s \in L \) and \(|s| \geq p \) then \(s \) is pumpable, that is \(s \) can be written in the form \(s = uvwx \) with

1. \(|v|, |x| \geq 1 \).
2. \(|vw| \leq p \).
3. For every integer \(i, i \geq 0 \), \(uv^iwx^iy \in L \).

Proof. Let \(\tilde{p}_L \) be the pumping constant for the standard pumping lemma applied to \(L \). We will chose \(p_L = 2\tilde{p}_L \).

Now let \(s \in L \) be any string of length at least \(p = p_L \).

We apply the standard pumping lemma to \(s \) and conclude that we can write \(s \) as \(\tilde{s} = uvwx \) with

1. \(|\tilde{v}| \geq 1 \).
2. \(|\tilde{v}wx| \leq \tilde{p} \).
3. For every integer \(i, i \geq 0 \), \(\tilde{u}\tilde{v}^i\tilde{w}x^i\tilde{y} \in L \).

If both \(|\tilde{v}| \geq 1 \) and \(|\tilde{x}| \geq 1 \) then the new result follows on setting \(u = \tilde{u}, v = \tilde{v}, w = \tilde{w}, x = \tilde{x}, y = \tilde{y} \).

Otherwise, if \(|\tilde{v}| \geq 1 \) and \(|\tilde{x}| = 0 \), then we set \(u = \tilde{u}, v = \tilde{v}, w = \lambda, x = \tilde{x}, y = \tilde{w} \).

We observe that for all \(i, uv^iwx^iy = \tilde{u}\tilde{v}^i\tilde{w}\tilde{x}^i\tilde{y} = \tilde{u}\tilde{v}^2\tilde{w}x^2\tilde{y} \in L \); we also observe that \(|uvwx| = 2|\tilde{v}| \leq 2|\tilde{v}\tilde{x}| \leq 2\tilde{p} = p \). Likewise, if \(|\tilde{v}| = 0 \) and \(|\tilde{x}| \geq 1 \), then we set \(u = \tilde{u}\tilde{w}, v = \tilde{x}, w = \lambda, x = \tilde{x}, y = \tilde{y} \). Again, \(uv^iwx^iy \in L \) for all integer \(i \geq 0 \) and \(|vw| \leq p \).
3.6 PDAs Recognize exactly the Context Free Languages

Lemma 3.6.1. Let L be a CFL. Then there is a PDA M_L that recognizes L.

Proof. Let L be generated by CNF grammar $G_L = (V_L, T, R_L, S_L)$. The corresponding M_L is illustrated in Figure 3.19. The computation centers on vertex $Main$. Each return visit to

![Diagram](image)

Figure 3.19: PDA M_L simulating CFL G_L.

$Main$ corresponds to the simulation of one step of a derivation in G_L. Specifically:

Claim. Let $s \in T^*$ and $\sigma \in V^*$. Then G_L generates string $s\sigma$ exactly if M_L can reach vertex $Main$ with data configuration $(s, \$\sigma^R)$.

In order to simulate the derivation’s use of rule $A \rightarrow a$, M_L has a self-loop labeled (Pop A, Read a). To simulate the use of rule $A \rightarrow BC$, M_L will execute the sequence Pop A, Push C, Push B (remember, $\$\sigma^R$ is on the stack). To achieve this, M_L has an additional vertex called “Push B” and edges (Main, “Push B”) and (“Push B", Main), labeled (Pop A, Push C) and Push B, respectively. It will be helpful to refer to these actions, that take M_L from vertex Main back to itself, as supermoves. So each supermove of M_L corresponds to one derivation step in G_L.

A derivation of a terminal string s occurs if $\sigma = \lambda$. To allow this to be recognized, M_L uses a $\$-$shielded stack. Then if M_L is at vertex Main with data-configuration $(s, \$)$, it can pop its stack and move to its final vertex. Thus if we can show the claim it is immediate that $G_L \Rightarrow^* w$ exactly if $w \in L(M_L)$.

We show the claim in two steps. First, suppose that $G_L \Rightarrow^* w$. Then there is a leftmost derivation $S = s_1\sigma_1 \Rightarrow s_2\sigma_2 \Rightarrow \cdots \Rightarrow s_{k+1}\sigma_{k+1} = w$. (In a leftmost derivation, at step i, the leftmost variable in σ_i, for $1 \leq i < k$, is always the one to be replaced using a
rule of the grammar. It corresponds to a Depth First Traversal of the derivation tree.) The corresponding \(k \) supermove computation by \(M_L \) starts by moving to vertex Main with \(\lambda \) read and \(\$s \) on its stack, i.e. it has data configuration \(C_1 = (\lambda, \$s) = (s_1, \$s^R) \). It then proceeds through the following \(k \) data configurations at vertex Main: \(C_2 = (s_2, \$s^R_2), \ldots, C_{k+1} = (s_{k+1}, \$s^R_{k+1}) = (w, \$) \), and it goes from \(C_1 \) to \(C_i+1 \), for \(1 \leq i \leq k \), by means of the supermove corresponding to the application of the rule taking \(s_i \sigma_i \) to \(s_{i+1} \sigma_{i+1} \). Finally \(M_L \) moves from vertex Main to its final vertex, popping \$ from its stack, i.e. \(w \in L(M_L) \).

Next suppose that \(M_L \) recognizes \(w \). It does so by means of a computation using \(k \) supermoves, for some \(k \geq 0 \). The computation begins by moving to vertex Main, while reading \(\lambda \) and pushing \$ on the stack, i.e. it is at configuration \(C_1 = (\lambda, \$) = (s_1, \$s^R). \) It then moves through the following series of data configurations at vertex Main: \(C_2 = (s_2, \$s^R_2), \ldots, C_{k+1} = (s_{k+1}, \$s^R_{k+1}) \), where, for \(1 \leq i \leq k \), \(C_{i+1} \) is reached from \(C_i \) by means of a supermove. By definition, the \(i \)th supermove corresponds to the application of the rule that takes string \(s_i \sigma_i \) to \(s_{i+1} \sigma_{i+1} \). Thus, the following is a derivation in grammar \(G_L: S = s_1 \sigma_1 \Rightarrow s_2 \sigma_2 \Rightarrow \cdots \Rightarrow s_{k+1} \sigma_{k+1} \). Following the \(k \)th supermove, \(M_L \) moves to its final vertex, which entails popping \$ from its stack. At this point, \(M_L \) has data configuration \((s_{k+1}, \lambda)\), and it accepts \(s_{k+1} \), the string read. By assumption, \(M_L \) was recognizing \(w \), thus \(s_{k+1} = w \). We conclude that \(S \Rightarrow^* s_{k+1} \sigma_{k+1} = w \). \(\square \)

Lemma 3.6.2. If \(L \) is context-free and \(R \) is regular then \(L \cap R \) is also context free, where \(L, R \subseteq \Sigma^* \).

Proof. Let \(G_L = (V_L, \Sigma, R_L, S_L) \) be a CNF grammar generating \(L \) and let \(M_R = (V_R, \text{start}, F_R, \delta_R) \) be a DFA recognizing \(R \). We will build a grammar \(G_{L \cap R} = (V_{L \cap R}, \Sigma, R_{L \cap R}, S_{L \cap R}) \) to generate \(L \cap R \). Let \(V_R = \{q_1, q_2, \ldots, q_m\} \). For each variable \(U \in V_L \), we create \(m^2 \) variables \(U_{ij} \) in \(V_{L \cap R} \). The rules we create will ensure that:

\[
U_{ij} \Rightarrow^* w \in \Sigma^* \text{ exactly if } U \Rightarrow^* w \text{ and there is a path labeled } w \text{ in } M_R \text{ going from } v_i \text{ to } v_j.
\]

Thus a variable in \(G_{L \cap R} \) records the name of the corresponding variable in \(G_L \) and also records a “start” and a “finish” vertex in \(M_R \). The constraint we are imposing is that \(U_{ij} \) can generate \(w \) exactly if both \(U \) can generate \(w \) and \(M_R \) when started at \(q_i \) will go to \(q_j \) on input \(w \). It follows that if \(q_f \) is a final vertex of \(M_R \) and if \(q_i = \text{start} \), then

\[
(S_L)_{1f} \Rightarrow^* w \text{ for some } q_f \in F_R \text{ exactly if } w \in L \cap R.
\]

We create the following rules.

- If \(A \rightarrow a \) is a rule in \(G_L \) and \(\delta_R(q_i, a) = q_j \), then \(U_{ij} \rightarrow a \) is a rule in \(G_{L \cap R} \).
3.6. PDAS RECOGNIZE EXACTLY THE CONTEXT FREE LANGUAGES

- If $A \rightarrow BC$ is a rule in G_L, then $A_{ij} \rightarrow B_{ij}C_{jk}$ is a rule in $G_{L\cap R}$, for all i, j, k, $1 \leq i, j, k \leq m$.

- Finally, if $S_L \rightarrow \lambda$ is a rule in G_L and $\lambda \in R$ (because $q_1 \in F_R$), then $S_{L\cap R} \rightarrow \lambda$ is a rule in $G_{L\cap R}$.

To see why this works, we consider any non-empty string $w \in L \cap R$ and look at a derivation tree T for w with respect to G_L. At the same time we look at a w-recognizing path P in M_R.

We label each leaf of T with the names of two vertices in M_R: the vertices that M_R is at right before and right after reading the input character corresponding to the character labeling the leaf. If we read across the leaves from left to right, recording vertex and character labels, we obtain a sequence $p_1w_1p_2w_2p_3, \ldots, p_nw_np_{n+1}$, where $p_1 = \text{start}$ and $p_{n+1} \in F_R$.

Next, we give the internal nodes in T vertex labels also. A node receives as its first label the first label of its leftmost leaf and as its second label the second label of its rightmost leaf. Suppose that A is the variable label at an internal node with children having variable labels B and C (see Figure 3.20). Suppose further that B receives vertex labels p and q (in that order), and C receives vertex labels r and s. Then $q = r$ and A receives vertex labels p and s. To obtain the derivation in $G_{L\cap R}$, we simply replace $A \Rightarrow BC$ by $A_{ps} \Rightarrow B_{pq}C_{qs}$. In addition, at the leaf level, we replace $A \Rightarrow a$ by $A_{pq} \Rightarrow a$ where p and q are the vertex labels on the leaf (and on its parent). Clearly, this is a derivation in $G_{L\cap R}$ and further it derives w. Thus if $w \in L \cap R$, then $S_{L\cap R} \Rightarrow^* w$.

On the other hand, suppose that $S_{L\cap R} \Rightarrow^* w$. Then consider the derivation tree for w in $G_{L\cap R}$. On replacing each variable U_{ij} by U we obtain a derivation tree for w in G_L. Thus $S_L \Rightarrow^* w$ also. On looking at the leaf level, and labeling each leaf with the vertex indices on the variable at its parent, we obtain a sequence $p_1w_1p_2w_2p_3, \ldots, p_nw_np_{n+1}$, where $w = w_1w_2 \cdots w_n$, $p_1 = \text{start}$ and $p_{n+1} \in F_R$. As $\delta(p_i, w_i) = p_{i+1}$, for $1 \leq i \leq n$, by the first rule definition for $G_{L\cap R}$, we see that $p_1p_2p_3 \cdots p_{n+1}$ is a w-recognizing path in M_R, and so $w \in R$. This shows that if $S_{L\cap R} \Rightarrow^* w$ then $w \in L \cap R$. \[\square\]
3.6.1 Constructing a CFG Generating a PDA-Recognized Language

Our final construction will show that if \(L \) is recognized by a pda, then there is a CFG generating \(L \). The first step in the construction it to represent the computation of the pda in terms of matching pushes and pops to the stack.

A little more terminology will be helpful.

Definition 3.6.3. A computation of \(M \) that goes from vertex \(p \) to vertex \(q \) and begins and ends with \(\sigma \) on the stack is called \(\sigma \)-preserving if throughout the computation \(\sigma \) remains on the stack (possibly with other characters pushed on top some of the time); i.e. none of \(\sigma \) is popped during this part of the computation.

Lemma 3.6.4. Let \(P \) be a \(w \)-computation path going from vertex \(p \) to vertex \(q \) that reads input \(w \) and that is \(\sigma \)-preserving for some \(\sigma \). Then the same computation is also \(\tau \)-preserving, for any \(\tau \).

Proof. The computation never seeks to pop any of the characters forming \(\sigma \) from the stack, so it does not matter what is on this portion of the stack. All that matters is what is pushed once the computation starts. Thus if the \(\sigma \) is replaced by \(\tau \) it has no effect on the computation. \(\square \)

In other words, the specific \(\sigma \) on the stack when a \(\sigma \)-preserving computation begins is irrelevant. Accordingly, we also call a \(\sigma \)-preserving computation a \textit{stack-preserving} computation.

Definition 3.6.5. \((s, \sigma)\) is called a data-configuration of PDA \(M \) at vertex \(p \) if \(M \) can end up at vertex \(p \) having \(\sigma \) on its stack and having read input string \(s \) (on starting the computation at its start vertex with an empty stack).

The Trapezoidal Decomposition

Let \(M_L = (V, T, \Gamma, F, s, \delta) \) be a \$-shielded pda recognizing \(L \) that has a single final vertex \(f \) which is reachable only with an empty stack. Let us further suppose that on each move \(M_L \) does either a Pop or a Push but not both (so a move in which neither a Pop nor a Push occurs can be replaced by two moves, the first being an unnecessary Push and the second being a Pop; likewise, a move which has both a Pop and a Push can be replaced by two moves: a Pop followed by a Push). Finally, we suppose that the first and last steps of \(M_L \)'s computation must go from vertex \(s \) to \(s' \) and from \(f' \) to \(f \), respectively, and do not do any reads, but just push and pop the \$ shield.

For this construction, it is helpful to view \(M_L \)'s computation in terms of a \textit{Stack Contents Diagram}, as shown in Figure 3.21. This shows the height of the stack evolving as the computation proceeds. We associate each vertex in the computation path with a matching successor or predecessor vertex (or possibly both), as follows.

Definition 3.6.6. Vertices \(p \) and \(r \) are matched if \(r \) is the first vertex following \(p \) for which the computation path from \(p \) to \(r \) is \(\sigma \)-preserving.
If we draw the edges connecting matched vertices in the Stack Contents Diagram, this naturally partitions the diagram into trapezoids (see Figure 3.22).

Consider the subcomputation of M_L that goes from a vertex p to its subsequent matched vertex r. We call the subcomputation a phase; let P denote this phase. Let A be the character pushed onto the stack in P’s first step; then this same A is popped in P’s last step. Suppose that the first step performs the operation “Read a, Push A” and takes M_L from vertex p to vertex q, and the last step performs the operation “Read b, Pop A” and takes M_L from vertex r to vertex t. (note that $a, b \in \{\lambda\} \cup T$.) Then this pair of actions can be represented by the left and right edges of the following trapezoid. It has left edge (p, q) and right edge (r, t), We name this trapezoid T_{pqrt}^{Aab}. We call trapezoid T_{pqrt}^{Aab} the base of phase P. It may be that P is a 2-step computation, in which case the trapezoid is actually a triangle, and $q = r$; we call such trapezoids triangles. But even if $q = r$ it could be that P lasts longer than 2 steps.

If the base of phase P is a non-triangular trapezoid, then P consists of a series of one or more subphases. Each subphase is stack-preserving, maintaining the A on the stack. Again, for each subphase P', we can identify the trapezoid at its base; again, it which represents the computation performed during the first and last steps of P'.
We can view a \(w \)-recognizing computation of \(M_L \) as a nested collection of phases which we represent using a trapezoidal tree. In a trapezoidal tree, each leaf node holds a triangle and each internal node a non-triangular trapezoid. Each subtree corresponds to a phase, which is a stack preserving computation of \(M_L \). In addition, the base of the phase is the trapezoid stored at the root of the corresponding subtree.

The following additional terminology will be helpful in specifying which trapezoidal trees could occur.

Definition 3.6.7. Trapezoid \(T_{pqr}^{Aab} \) is realizable if \(M_L \) has an edge from \(p \) to \(q \) labeled “Read \(a \), Push \(A \)” and an edge from \(r \) to \(t \) labeled “Read \(b \), Pop \(A \)”.

Only realizable trapezoids could occur in the Trapezoidal Decomposition of a computation by \(M_L \).

Definition 3.6.8. Let \(Z \) be a tree in which each internal node stores a realizable trapezoid and each leaf a realizable triangle. \(Z \)'s label is determined recursively as follows. Suppose that \(Z \) is rooted at internal node \(z \) and has subtrees \(Z_1, Z_2, \ldots, Z_k \) in left to right order, where \(z \) stores trapezoid \(T_{pqr}^{Aab} \). Then \(Z \) has label:

\[
\text{label}(Z) = a \circ \text{label}(Z_1) \circ \text{label}(Z_2) \circ \cdots \circ \text{label}(Z_k) \circ b.
\]

Also \(p \) is called \(Z \)'s start vertex and \(t \) its end vertex.

Then a \(w \)-recognizing computation can be represented by a trapezoidal tree \(Z(w) \), a tree which satisfies the following properties.

Property 3.6.9.

1. Each leaf stores a realizable triangle.

2. Each internal node stores a realizable non-triangular trapezoid.

3. The root of the tree stores trapezoid \(T_{s_0f'}^{s_0f} \). Recall that \(s \) is \(M_L \)'s start vertex and \(f \) its sole final vertex. Also the first and last steps of \(M_L \)'s computation go from from vertex \(s \) to \(s' \) and from \(f' \) to \(f \), respectively, and do not perform any reads, but just push and pop the \$\)-shield.

4. If \(v \) is an internal node with children \(v_1, v_2, \ldots, v_k \), for some \(k \geq 1 \), if \(v \) stores trapezoid \(T_{pqr}^{Aab} \), and if \(v_i \) stores a trapezoid with bottom edge \((q_i, r_i)\), for \(1 \leq i \leq k \), then \(q_i = r_{i+1} \), for \(1 \leq i \leq k-1 \), \(q = q_1 \) and \(r = r_k \).

Lemma 3.6.10. Let \(\Pi \) be a stack-preserving computation of \(M_L \) that begins at vertex \(p \) and ends at vertex \(t \) and that reads input \(w \), and let \(Z \) be the corresponding trapezoidal tree. Then \(\text{label}(Z) = w \).

Proof. We prove the result by induction on the height of \(Z \).

Base case. \(Z \) comprises a single (leaf) node \(v \).

Let \(T_{pqr}^{Aab} \) be the triangle stored at node \(v \). Then the computation of \(M_L \) comprises two steps, the first one reading \(a \) and the second reading \(b \) (there is also a “Push \(A \)” and a “Pop \(A \)” in
the first and second steps, respectively); thus \(w = ab \). And \(\text{label}(Z) = ab = w \), proving the claim in this case.

Inductive step. Suppose that the claim is true for all trapezoid trees of height \(h \leq l \). We show that it is true for trees \(Z \) of height \(l + 1 \) also.

Let \(z \) be the root of \(Z \) and suppose it has subtrees \(Z_1, Z_2, \ldots, Z_k \) in left to right order, for some \(k \geq 1 \). Let \(T_{\text{pqrt}}^{\text{Ab}} \) be the trapezoid stored at \(z \). Then the computation of \(M_L \) represented by \(Z \) consists of a first step “Read \(a \), Push \(A \)”, followed in turn by the stack-preserving computations represented by \(Z_1, Z_2, \ldots, Z_k \), followed by a final step “Read \(b \), Pop \(A \)”. Suppose that \(M_L \) reads string \(w_i \) during the computation corresponding to \(Z_i \). By the inductive hypothesis, \(\text{label}(Z_i) = w_i \). Thus \(M_L \)’s computation corresponding to tree \(Z \) reads \(aw_1w_2 \cdots w_kb = w \). And \(\text{label}(Z) = a \circ \text{label}(Z_1) \circ \text{label}(Z_2) \circ \cdots \circ \text{label}(Z_k) \circ b = w \).

We conclude that \(\text{label}(Z) = w \) for all trees \(Z \).

We now show the converse.

Lemma 3.6.11. Let \(Z \) be a trapezoidal tree that observes Property 3.6.9. Suppose that \(\text{label}(Z) = w \). Then there is a stack-preserving computation of \(M_L \) that reads \(w \), starts at \(Z \)’s start vertex and ends at \(Z \)’s end vertex.

Proof. We prove the result by induction on the height of \(Z \).

Base case. \(Z \) comprises a single (leaf) node \(v \).

Let \(T_{\text{pqrt}}^{\text{Ab}} \) be the triangle stored at node \(v \). Clearly, \(\text{label}(Z) = ab \), so \(w = ab \).

Now define a computation of \(M_L \) comprising the following two steps: the first step consists of “Read \(a \), Push \(A \)” plus a move from \(p \), \(Z \)’s start vertex, to vertex \(r \); the second step consists of “Read \(b \), Pop \(B \)” plus a move to vertex \(t \), \(Z \)’s end vertex. Clearly this computation is stack-preserving, it reads \(ab = w \), and it begins at \(Z \)’s start vertex and ends at \(Z \)’s end vertex.

Inductive step. Suppose that the claim is true for all trapezoid trees \(Z \) of height \(h \leq l \). We show that it is true for trees of height \(l + 1 \) also.

Let \(z \) be the root of \(Z \) and suppose it has subtrees \(Z_1, Z_2, \ldots, Z_k \) in left to right order, for some \(k \geq 1 \). Let \(T_{\text{pqrt}}^{\text{Ab}} \) be the trapezoid stored at \(z \). Let the root of subtree \(Z_i \), for \(1 \leq i \leq k \), store a trapezoid with bottom edge \((q_i, r_i) \). By Property 3.6.9, \(r_i = q_{i+1} \) for \(1 \leq i \leq k - 1 \), \(q_1 = q \), and \(r_k = r \). Let \(\text{label}(Z_i) = w_i \), for \(1 \leq i \leq k \). Thus \(\text{label}(Z) = aw_1w_2 \cdots w_kb = w \).

By the inductive hypothesis, there is a stack-preserving subcomputation of \(M_L \) that goes from vertex \(q_i \) to \(r_i \) and that reads \(w_i \), for \(1 \leq i \leq k \).

We define a computation of \(M_L \) comprising the following steps: the first step consists of “Read \(a \), Push \(A \)” and a move from vertex \(p \) to vertex \(q = q_1 \). Then there are a series of \(k \) stack-preserving computations, the \(i \)th one corresponding to subtree \(Z_i \), and going from \(q_i \) to \(r_i = q_{i+1} \), while reading \(w_i \). The final step consists of “Read \(b \), Pop \(A \)” and a move from vertex \(r = r_k \) to \(t \). Altogether, the computation goes from vertex \(p \) to vertex \(t \), it reads \(aw_1w_2 \cdots w_kb = w \), and it is stack preserving.

We conclude that for all \(Z \) there is a stack-preserving computation of \(M_L \) that reads \(w \), starts at \(Z \)’s start vertex and ends at \(Z \)’s end vertex.
Lemmas 3.6.10 and 3.6.11 show that a w-recognizing computation of M_L can be represented by a trapezoidal tree, and further that any trapezoidal tree observing Property 3.6.9 corresponds to a label(Z)-recognizing computation of M_L.

To facilitate turning this tree into a derivation tree, we want the nodes in the trapezoidal tree to have bounded degree. Let v be a node in the trapezoidal tree with $k \geq 1$ children v_1, v_2, \cdots, v_k. We achieve the bounded degree by introducing intermediate nodes, as follows. We create intermediate nodes x_1, x_2, x_{k-1}, and y_1, y_2, \cdots, y_k, together with the following tree edges. If $k = 1$, y_1 is the child of v; otherwise x_1 is the child of v. For $1 \leq i \leq k - 2$, x_i will have left child y_i and right child x_{i+1}; x_{k-1} will have left child y_{k-1} and and right child y_k. Clearly, in the new tree, v still has descendants v_1, v_2, \cdots, v_k in left to right order. (see Figure 3.23.) We use the term x-nodes to refer to the nodes x_i and y-nodes to refer to the y_i.

Suppose that the sequence of bottom edges for the trapezoids associated with nodes v_1, v_2, \cdots, v_k is $(q_0, q_1), (q_1, q_2), \cdots, (q_{k-1}, q_k)$. So edge (q_0, q_k) is the top edge for the trapezoid associated with v. We associate span (q_{i-1}, q_i) with node y_i and span (q_{i-1}, q_k) with node x_i; the latter is exactly the union of the spans for the nodes y_i, \cdots, y_k, and these nodes comprise x_i's descendants.

We make the trapezoidal tree a derivation tree for w by putting a suitable variable at each node and adding appropriate leaf nodes for the terminals read during M_L's computation; in addition, we introduce suitable rules in the grammar so that the variable at each node can be replaced by the terminals read on the side edges of the corresponding trapezoid and the variables for its original children, if any.

The Context Free Grammar G_L

Now we are ready to define the Context Free Grammar G_L. We will create a variable for each realizable trapezoid, together with variables to label the x- and y-nodes. In addition, we create rules to enable the variable for a node at the root of a subtree Z to derive label(Z).

Thus we introduce a variable U_{pqr} for each realizable trapezoid T_{pqr}. We create variables X_{pq} for all $p, q \in V$ for the x-nodes and variables Y_{pq} for all $p, q \in V$ for the y-nodes. We add the following rules:
3.6. PDAS RECOGNIZE EXACTLY THE CONTEXT FREE LANGUAGES

- \(U_{pqrt}^{Aab} \rightarrow aX_{qr}b \mid aY_{qr}b \) for all realizable trapezoids \(T_{pqrt}^{Aab} \).
- \(U_{pqrt}^{Aab} \rightarrow ab \) for all realizable trapezoids \(T_{pqrt}^{Aab} \) (these are triangles).
- \(Y_{qr} \rightarrow U_{q}^{A'}a'b' \) for all \(q, q', r, r \in V, A' \in \Gamma, \text{and } a', b' \in T \).
- \(X_{qt} \rightarrow Y_{qr}X_{rt} \mid Y_{qr}Y_{rt} \) for all \(r \in V \).

The start variable for \(G_L \) is \(U_{s}^{\Sigma}f_f \) (recall that \(s \) is the start vertex in \(M_L \) and \(f \) the single final vertex, \(M_L \) is \$\)-shielded, its first and last steps perform no reads, and so \(q = r \) we use the rule \(U_{pqrt}^{Aab} \rightarrow ab \).

It is easy to see that this derivation derives \(\text{label}(Z) = w \).

\[\square \]

Lemma 3.6.12. Let \(Z \) be a trapezoidal tree obeying Property 3.6.9. Let \(w = \text{label}(Z) \). Then \(w \in L(G_L) \).

Proof. To obtain a derivation tree in \(G_L \), we replace each trapezoid \(T_{pqrt}^{Aab} \) at a node \(v \) by the variable \(U_{pqrt}^{Aab} \). For each variable \(U_{pqrt}^{Aab} \) we add a left leaf child labeled by \(a \) and a right leaf child labeled by \(b \). We give variable \(X_{pq} \) to an \(x \)-node with span \((p, q) \), and variable \(Y_{pq} \) to a \(y \)-node with span \((p, q) \).

We use the following rules to enable the derivation of the string labeling the leaves of this tree. For an \(x \)-node \(v \) with span \((q, t) \) and children with spans \((q, r) \) and \((r, t) \) we use one of the rules \(X_{qt} \rightarrow Y_{qr}X_{rt} \mid Y_{qr}Y_{rt} \), according as the right child of \(v \) is an \(x \)-node or a \(y \)-node. For a \(y \)-node with span \((p, t) \), whose child has label variable \(U_{pqrt}^{Aab} \), we use the rule \(Y_{pt} \rightarrow U_{pqrt}^{Aab} \). For a node \(v \) with label \(U_{pqrt}^{Aab} \) we use one of the rules \(U_{pqrt}^{Aab} \rightarrow aX_{qr}b \mid aY_{qr}b \), according as \(v \) has an \(x \)-child or a \(y \)-child, while if \(v \) has no child (and so \(q = r \) we use the rule \(U_{pqrt}^{Aab} \rightarrow ab \).

It is easy to see that this derivation derives \(\text{label}(Z) = w \). \[\square \]

Lemma 3.6.13. Suppose that \(w \in L(G_L) \); then there is a trapezoidal tree \(Z \) obeying Property 3.6.9 with \(w = \text{label}(Z) \).

Proof. Let \(T_G(w) \) be a derivation tree for \(w \). We will construct the trapezoidal tree \(Z \) as follows. We simply replace each variable \(U_{pqrt}^{Aab} \) by trapezoid \(T_{pqrt}^{Aab} \), remove the leaves (labeled by terminals), and remove the variables labeling \(x \)- and \(y \)-nodes.

Clearly \(\text{label}(Z) = w \).

It remains to show that \(Z \) obeys Property 3.6.9. Part 2 follows because the variables \(U_{pqrt}^{Aab} \) correspond to realizable trapezoids. Part 3 follows because \(G_L \)’s start variable is \(U_{ss}^{\Sigma}f_f \) so \(Z \)'s root stores trapezoid \(T_{ss}^{\Sigma}f_f \). Part 1 follows because each leaf in \(Z \) corresponds to a node with two leaf children in the derivation tree, and such nodes have variables \(U_{pqrt}^{Aab} \), which are replaced by realizable triangles \(T_{pqrt}^{Aab} \). Part 4 follows because if in the derivation tree \(U_{pqrt}^{Aab} \) derives \(T_{p_1q_1r_1t_1}^{A_{11}a_{11}b_{11}} \cdots T_{p_kq_kb_k}^{A_{kk}a_{kk}b_{kk}} \) via intermediate \(X \) and \(Y \) variables, then \(q = p_1 \), \(p_{i+1} = q_i \) for \(1 \leq i \leq k - 1 \), and \(q_k = r \). But then the corresponding trapezoids \(T_{pqrt}^{Aab} \) and \(T_{A_{11}a_{11}b_{11}} \cdots T_{A_{kk}a_{kk}b_{kk}} \) obey the same condition, which is part 4 of Property 3.6.9. \[\square \]

Lemmas 3.6.10–3.6.13 show that \(L(G_L) = L(M_L) \).
Exercises

1. For the pda in Figure 3.24 answer the following questions.

 ![Figure 3.24: Figure for Problem 1](image)

 i. What is its start vertex?
 ii. What are its final vertices?
 iii. Give the sequence of vertices and associated data configurations the pda goes through in an accepting computation on input \(abba\). Are there any other computation paths that can be followed on this input, and if yes, give the sequence of vertices such a computation goes through.
 iv. What is the language accepted by this pda?

2. Give PDAs to recognize the following languages. You are to give both an explanation in English of what each PDA does plus a graph of the PDA; seek to label the graph vertices accurately.

 i. \(A = \{w \mid w \text{ has odd length, } w \in \{a, b\}^* \text{ and the middle symbol of } w \text{ is an } a\}\).
 ii. \(B = \{w \mid w \in \{a, b\}^* \text{ and } w \neq a^ib^i \text{ for any integer } i\}\).
 iii. \(C = \{w \mid w \in \{a, b\}^* \text{ and } w \text{ contains equal numbers of } a\text{'s and } b\text{'s}\}\).
 iv. \(D = \{ww^{R}x \mid w, x \in \{a, b\}^*\}\).
 v. \(E = \{wcw^{R}x \mid w, x \in \{a, b\}^*\}\).

3. Suppose that \(A\) is recognized by PDA \(M\). Give a PDA to recognize \(A^*\).

4. Let \(C\) be a language over the alphabet \(\{a, b\}\) and let \(\text{Suffix}(C) = \{w \mid \text{there is a } u \in \{a, b\}^* \text{ with } uw \in C\}\). Show that if \(C\) is recognized by a pda then so is \(\text{Suffix}(C)\).
5. i. Let $A = \{uav\#xby \mid u, v, x, y \in \{a, b\}^* \text{ and } (|u| - |v|) = (|x| - |y|)\}$. Give a pda to recognize A.

ii. Let $B = \{w\#z \mid w, z \in \{a, b\}^* \text{ and } |w| \neq |z|\}$. Give a pda to recognize B.

iii. Show that $A \cup B = \{s\#t \mid s, t \in \{a, b\}^* \text{ and } s \neq t\}$.

6. Consider the pda in Figure 3.24. Add descriptors to the vertices. What language does this pda recognize?

7. Consider the following context free grammar.

 $S \leftarrow (S) | SS | () | []$

 i. What are its terminals?

 ii. What are its variables?

 iii. What are its rules?

 iv. Show the derivation of string $([][()])$.

 v. Describe in English the set of strings generated by this grammar.

8. Give CFG’s to generate the following languages.

 i. $A = \{w \mid w \text{ has odd length}, w \in \{a, b\}^* \text{ and the middle symbol of } w \text{ is an } a\}$.

 ii. $B = \{w \mid w \in \{a, b\}^* \text{ and } w = w^R\}$. A is the language of palindromes, strings that read the same forward and backward.

 Hint: Be sure to handle strings of all possible lengths.

 iii. $C = \{ww^Rx \mid w, x \in \{a, b\}^*\}$.

 iv. $D = \{w \mid w \in \{a, b\}^* \text{ and } w \text{ contains an equal number of } a\text{'s and } b\text{'s}\}$.

 Hint: suppose that the first character in w is an a. Let x be the shortest initial substring of w having an equal number of a’s and b’s. If $|x| < |w|$, then w can be written as $w = xy$; what can you say about y? Otherwise, $x = w$ and w can be written as $w = azb$; what can you say about z?

 v. $E = \{w\#x \mid w, x \in \{a, b\}^* \text{ and } w^R \text{ is an initial substring of } x\}$.

 Hint: x can be written as $x = w^Ry$ for some $x \in \{a, b\}^*$.

9. i. Let $E = \{a^ib^j \mid i < j\}$. Give a CFL to generate E.

ii. Let $F = \{a^ib^j \mid 2i > j\}$. Give a CFL to generate F.

iii. Let $J = \{a^ib^j \mid i < j < 2i\}$. Give a CFL to generate J.

 Hint: Let $i = h + l$ and $j = h + 2l$. What can you say about h and l?

10. i. Give a context free grammar to generate the following language: $L_1 = \{a^ib^j$#$a^i \mid i, j \geq 0\}$.

 ii. Give a context free grammar to generate the following language: $L_2 = \{w\#x$#$y \mid w, x, y \in \{a, b\}^* \text{ and } |x| = |w| + |y|\}$.
iii. Hence give a context free grammar to generate the following language: \(L_3 = \{ uv \mid |u| = |v| \text{ but } u \neq v \} \). Hint: think of the \# and the $ from part (2) as a pair of aligned yet unequal characters in \(u \) and \(v \); what is the relation among the lengths of the remaining pieces of \(u \) and \(v \)?

11. Let \(A \) be a CFL generated by a CFG \(G_A \). Give a CFG grammar \(G_A^* \), based on \(G_A \), to generate \(A^* \). Show that \(L(G_A^*) = A^* \).

12. Convert the following CFGs to CNF form.

i. \(G_1 \) has start variable \(S \), terminal set \(\{ a, b, c \} \) and rules

\[
S \to SBS \mid BC; \quad B \to ab \mid \lambda; \quad C \to c \mid \lambda.
\]

ii. \(G_2 \) has start variable \(S \), terminal set \(\{ a, b, c \} \) and rules

\[
S \to AB \mid SX; \quad A \to a \mid \lambda; \quad B \to CA; \quad C \to c \mid \lambda; \quad X \to SAS.
\]

13. Show that the following languages are not context free.

i. \(A = \{ a^i b^j c^k d^l \mid i, j, k, l \geq 0 \} \).

ii. \(B = \{ a^m b^n c^m d^n \mid m, n \geq 0 \} \).

iii. \(C = \{ w \mid w \in \{ a, b, c \}^* \text{ and the number of } a \text{'s, b's and c's in } w \text{ are all equal} \} \).

iv. \(D = \{ u\#v\#w \mid u, v, w \in \{ a, b \}^*, \text{ the number of } a \text{'s in } u \text{ equals } |v|, \text{ and the number of } b \text{'s in } v \text{ equals } |w| \} \).

v. Let \(E = \{ w \mid w \in \{ a, b, c, d \}^* \text{ and } w \text{ contains equal numbers of } a \text{'s and } b \text{'s, and equal numbers of } c \text{'s and } d \text{'s} \} \). Show that \(D \) is not context free.

vi. \(F = \{ a^{2i} \mid i \geq 1 \} \).

Comment. Any CFL over a 1-character alphabet is a regular language. Give a proof without using this fact.

vii. \(H = \{ a^{2i} \mid i \geq 0 \} \).

Comment. Any CFL over a 1-character alphabet is a regular language. Give a proof without using this fact.

viii. \(J = \{ x_1 \# x_2 \# \cdots \# x_l \mid x_h \in \{ a, b \}^*, 1 \leq h \leq l, \text{ and for some } i, j, k, 1 \leq i < j < k, \mid x_i \mid = \mid x_j \mid = \mid x_k \mid \} \).

ix. \(K = \{ x_1 \# x_2 \# \cdots \# x_k \mid x_h \in \{ a, b \}^*, 1 \leq h \leq k, \text{ and for some } i, j, 1 \leq i < j \leq k, \quad x_i = x_j \} \).

x. Let \(L = \{ a^i b^j \mid i \text{ is an integer multiple of } j \} \).

xi. Let \(M = \{ w x w^R \mid w, x \in \{ a, b \}^* \text{ and } |w| = |x| \} \).

xii. Let \(N \) be the language consisting of all palindromes over the alphabet \(\Sigma = \{ a, b, c \} \) having equal numbers of \(a \text{'s and } b \text{'s} \).
14. Consider the following CNF context-free grammar.

\[S \rightarrow AB, \quad A \rightarrow AA, \quad A \rightarrow a, \quad B \rightarrow b. \]

Show the PDA generated by applying the construction of Section 3.6.1 to this grammar.

15. Consider the PDA shown in Figure 3.2.

i. Draw the trapezoidal diagram for the computation recognizing input \(aabb \).

ii. Give the CFL generated by applying the construction of Section 3.6.1 to this PDA.

16. For each of the language transformations \(T \) defined in the parts below, answer the following two questions.

a. Suppose that \(L \) is a CFL. Show that \(T(L) \) is also a CFL by giving a CFG to generate \(T(L) \). Remember to explain why your solution is correct.

b. Now suppose that \(L \) is recognized by a PDA. Show that \(T(L) \) is also recognized by a PDA. Again, remember to explain why your solution is correct.

Comment: The two parts are equivalent; nonetheless, you are being asked for a separate construction for each part.

i. Let \(w \in \{a, b, c\}^\ast \). Define \(\text{Sbst}(w, a, b) \) to be the string obtained by replacing all instances of the character \(a \) in \(w \) with \(b \). e.g. \(\text{Sbst}(ac, a, b) = bc, \text{Sbst}(cc, a, b) = cc, \text{Sbst}(abc, a, b) = bcbc \).

Let \(L \) be a language over the alphabet \(\{a, b, c\} \). Define \(T(L) = \text{Sbst}(L, a, b) = \{x \mid x = \text{Sbst}(w, a, b) \text{ for some } w \in L\} \).

ii. Let \(w \in \{a, b, c\}^\ast \). Define \(\text{OneSubst}(w, a, b) \), or \(\text{OS}(w, a, b) \) for short, to be the set of strings obtained by replacing one instance of the character \(a \) from \(w \) with a \(b \). e.g. \(\text{OS}(acacac, a, b) = \{bcacac, acbcac, acacbc\} \).

Let \(L \) be a language over the alphabet \(\{a, b, c\} \). Define \(T(L) = \text{OS}(L, a, b) = \{x \mid x = \text{OS}(w, a, b) \text{ for some } w \in L\} \).

iii. Let \(w \in \{a, b, c\}^\ast \). Define \(\text{Remove-c}(w) \) to be the string obtained by deleting all instances of the character \(c \) from \(w \). e.g. \(\text{Remove-c}(ab) = ab, \text{Remove-c}(cc) = \lambda, \text{Remove-c}(abc) = ab, \text{Remove-c}(acacac) = aac \).

Let \(L \) be a language over the alphabet \(\{a, b, c\} \). Define \(T(L) = \text{Remove-c}(L) = \{x \mid x = \text{Remove-c}(w) \text{ for some } w \in L\} \).

iv. Let \(w \in \{a, b, c\}^\ast \). Define \(\text{Remove-One-c}(w) \) to be the set of strings obtained by deleting one instance of the character \(c \) from \(w \). e.g. \(\text{Remove-One-c}(acacac) = \{aacac, acac, aca\} \).

Let \(L \) be a language over the alphabet \(\{a, b, c\} \).
Define \(L(T) = \text{Remove-One-c}(L) = \{x \mid x = \text{Remove-One-c}(w) \text{ for some } w \in L\} \).
v. Let h be a mapping from Σ to Σ^*, that is h maps each character in Σ to a string of characters. Define $h(s)$ for a string $s = s_1s_2 \cdots s_k$ to be the string $h(s_1)h(s_2)\cdots h(s_k)$. Define $T(L) = \{h(w) \mid w \in L\}$.

vi. Let h be a mapping from Σ to R where R is the set of regular expressions over alphabet Σ. Define $h(s)$ for a string $s = s_1s_2 \cdots s_k$ to be the string $h(s_1)h(s_2)\cdots h(s_k)$. Define $T(L) = \{h(w) \mid w \in L\}$.