Lecture 10: Parallel Patterns:
The What and How of Parallel Programming

G63.2011.002/G22.2945.001 · November 9, 2010
Tentative Plan for Rest of Class

• Today: Parallel Patterns
• Nov 16: Load Balancing
• Nov 23: More performance tricks, tools
• Nov 30: Odds and Ends in GPU Land
• Dec 7: moved to Dec 14 (still ok?)
• Dec 14, 21: Final Project Presentations
 • Will assign presentation date this week.
Tentative Plan for Rest of Class

- Today: Parallel Patterns
- Nov 16: Load Balancing
- Nov 23: More performance tricks, tools
- Nov 30: Odds and Ends in GPU Land
- Dec 7: moved to Dec 14 (still ok?)
- Dec 14, 21: Final Project Presentations
 - Will assign presentation date this week.

Anything not on here that you would like covered?
Tentative Plan for Rest of Class

- Today: Parallel Patterns
- Nov 16: Load Balancing
- Nov 23: More performance tricks, tools
- Nov 30: Odds and Ends in GPU Land
- Dec 7: moved to Dec 14 (still ok?)
- Dec 14, 21: Final Project Presentations
 - Will assign presentation date this week.

Will post HW3 solution soon. (list message)
Graded HW3 next week.
“Traditional” parallel programming in a nutshell

Key question:

- Data Dependencies
Outline

Embarrassingly Parallel

Partition

Pipelines

Reduction

Scan
Outline

Embarrassingly Parallel

Partition

Pipelines

Reduction

Scan
y_i = f_i(x_i)

where \(i \in \{1, \ldots, N\} \).

Notation: (also for rest of this lecture)

- \(x_i \): inputs
- \(y_i \): outputs
- \(f_i \): (pure) functions (i.e. no side effects)

When does a function have a “side effect”? In addition to producing a value, it
- modifies non-local state, or
- has an observable interaction with the outside world.

Often:
- \(f_1 = \cdots = f_N \).

Then
- Lisp/Python function `map`
- C++ STL `std::transform`
Embarrassingly Parallel

When does a function have a “side effect”?

In addition to producing a value, it
 • modifies non-local state, or
 • has an observable interaction with the outside world.

where \(i \in \{1, \ldots, N\} \).

Notation: (also for rest of this lecture)
 • \(x_i \): inputs
 • \(y_i \): outputs
 • \(f_i \): (pure) functions (i.e. no side effects)
y_i = f_i(x_i)

where \(i \in \{1, \ldots, N\} \).

Notation: (also for rest of this lecture)

- \(x_i \): inputs
- \(y_i \): outputs
- \(f_i \): (pure) functions (i.e. no side effects)
Embarrassingly Parallel

\[y_i = f_i(x_i) \]

where \(i \in \{1, \ldots, N\} \).

Notation: (also for rest of this lecture)

- \(x_i \): inputs
- \(y_i \): outputs
- \(f_i \): (pure) functions (i.e. no side effects)

Often: \(f_1 = \cdots = f_N \). Then

- Lisp/Python function map
- C++ STL std::transform
Embarrassingly Parallel: Graph Representation

Trivial? Often: no.
Embarrassingly Parallel: Graph Representation

Trivial? Often: no.
Surprisingly useful:

- Element-wise linear algebra: Addition, scalar multiplication (*not* inner product)
- Image Processing: Shift, rotate, clip, scale, . . .
- Monte Carlo simulation
- (Brute-force) Optimization
- Random Number Generation
- Encryption, Compression (after blocking)
- Software compilation
 - `make -j8`
Embarrassingly Parallel: Examples

Surprisingly useful:

- Element-wise linear algebra: Addition, scalar multiplication (*not* inner product)
- Image Processing: Shift, rotate, clip, scale, . . .
- Monte Carlo simulation
- (Brute-force) Optimization
- Random Number Generation
- Encryption, Compression (after blocking)
- Software compilation
 - `make -j8`

But: Still needs a minimum of coordination. How can that be achieved?
Mother-Child Parallelism

Mother-Child parallelism:

- Send initial data
- Collect results

(Formerly called “Master-Slave”)
Embarrassingly Parallel: Issues

- Process Creation: Dynamic/Static?
 - MPI 2 supports dynamic process creation

- Job Assignment (‘Scheduling’): Dynamic/Static?

- Operations/data light- or heavy-weight?

- Variable-size data?

- Load Balancing:
 - Here: easy
Embarrassingly Parallel: Issues

- Process Creation: Dynamic/Static?
 - MPI 2 supports dynamic process creation
- Job Assignment (‘Scheduling’): Dynamic/Static?
- Operations/data light- or heavy-weight?
- Variable-size data?
- Load Balancing:
 - Can you think of a load balancing recipe?
Outline

Embarrassingly Parallel

Partition

Pipelines

Reduction

Scan
\[y_i = f_i(x_{i-1}, x_i, x_{i+1}) \]

where \(i \in \{1, \ldots, N\} \).
\[y_i = f_i(x_{i-1}, x_i, x_{i+1}) \]

where \(i \in \{1, \ldots, N\} \).

Includes straightforward generalizations to dependencies on a larger (but not \(O(P) \)-sized!) set of neighbor inputs.
Partition: Graph
Partition: Examples

- Time-marching (in particular: PDE solvers)
 - (Including finite differences → HW3!)
- Iterative Methods
 - Solve $Ax = b$ (Jacobi, ...)
 - Optimization (all P on single problem)
 - Eigenvalue solvers
- Cellular Automata (Game of Life :-)

Embarrassing Partition Pipelines Reduction Scan
Partition: Issues

- Only useful when the computation is mainly local
 - Responsibility for updating one datum rests with one processor
- Synchronization, Deadlock, Livelock, ...
 - Performance Impact
 - Granularity
- Load Balancing: Thorny issue
 - → next lecture
- Regularity of the Partition?
Rendezvous Trick

- Assume an irregular partition.
- Assume problem components i, j on unknown partitions p_i, p_j need to communicate.
- How can p_i find p_j (and vice versa)?

Communicate via a third party, $p_f(i, j)$.

For f: think ‘hash function’.

"I'm in p_i.

"I'm in $p_j".\)
Rendezvous Trick

- Assume an irregular partition.
- Assume problem components i, j on unknown partitions p_i, p_j need to communicate.
- How can p_i find p_j (and vice versa)?

Communicate via a third party, $p_f(i,j)$.

For f: think ‘hash function’.
Rendezvous Trick

• Assume an irregular partition.
• Assume problem components i, j on unknown partitions p_i, p_j need to communicate.
• How can p_i find p_j (and vice versa)?

Communicate via a third party, $p_f(i,j)$.

For f: think ‘hash function’.
Rendezvous Trick

- Assume an irregular partition.
- Assume problem components i, j on unknown partitions p_i, p_j need to communicate.
- How can p_i find p_j (and vice versa)?

Communicate via a third party, $p_f(i,j)$.

For f: think ‘hash function’.
Rendezvous Trick

- Assume an irregular partition.
- Assume problem components i, j on unknown partitions p_i, p_j need to communicate.
- How can p_i find p_j (and vice versa)?

Communicate via a third party, $p_f(i,j)$.

For f: think ‘hash function’.
Rendezvous Trick

- Assume an irregular partition.
- Assume problem components i, j on unknown partitions p_i, p_j need to communicate.
- How can p_i find p_j (and vice versa)?

Communicate via a third party, $p_f(i,j)$.

For f: think ‘hash function’.
Outline

Embarrassingly Parallel

Partition

Pipelines

Reduction

Scan
Pipelined Computation

\[y = f_N(\cdots f_2(f_1(x)) \cdots) \]
\[= (f_N \circ \cdots \circ f_1)(x) \]

where \(N \) is fixed.
Pipelined Computation: Graph

\[x \xrightarrow{f_1} f_1 \xrightarrow{f_2} f_3 \xrightarrow{f_4} f_6 \xrightarrow{} y \]
Pipelined Computation: Graph

Processor Assignment?
Pipelined Computation: Examples

- Image processing
- Any multi-stage algorithm
 - Pre/post-processing or I/O
- Out-of-Core algorithms

Specific simple examples:
- Sorting (insertion sort)
- Triangular linear system solve (‘backsubstitution’)
 - Key: Pass on values as soon as they’re available

(Will see more efficient algorithms for both later)
Pipelined Computation: Issues

- Non-optimal while pipeline fills or empties
- Often communication-inefficient
 - for large data
- Needs some attention to synchronization, deadlock avoidance
- Can accommodate some asynchrony
 But don’t want:
 - Pile-up
 - Starvation
Outline

Embarrassingly Parallel

Partition

Pipelines

Reduction

Scan
Reduction

\[y = f(\cdots f(f(x_1, x_2), x_3), \ldots , x_N) \]

where \(N \) is the input size.
Reduction

\[y = f(\cdots f(f(x_1, x_2), x_3), \ldots, x_N) \]

where \(N \) is the input size.

Also known as...

- Lisp/Python function reduce (Scheme: fold)
- C++ STL std::accumulate
Reduction: Graph

Embarrassing Partition Pipelines Reduction Scan
Painful! Not parallelizable.
Can we do better?

“Tree” very imbalanced. What property of f would allow ‘rebalancing’?
Approach to Reduction

Can we do better?

“Tree” very imbalanced. What property of f would allow ‘rebalancing’?

$$f(f(x, y), z) = f(x, f(y, z))$$

Looks less improbable if we let $x \circ y = f(x, y)$:

$$x \circ (y \circ z)) = (x \circ y) \circ z$$

Has a very familiar name: **Associativity**
Reduction: A Better Graph

$x_0 \rightarrow x_1 \rightarrow x_2 \rightarrow x_3 \rightarrow x_4 \rightarrow x_5 \rightarrow x_6 \rightarrow \cdots \rightarrow y$

Embarrassing Partition Pipelines Reduction Scan
Reduction: A Better Graph

Processor allocation?
Mapping Reduction to the GPU

- Obvious: Want to use tree-based approach.
- Problem: Two scales, Work group and Grid
 - Need to occupy both to make good use of the machine.
- In particular, need synchronization after each tree stage.

With material by M. Harris (Nvidia Corp.)
Mapping Reduction to the GPU

- Obvious: Want to use tree-based approach.
- Problem: Two scales, Work group and Grid
 - Need to occupy both to make good use of the machine.
- In particular, need synchronization after each tree stage.
- Solution: Use a two-scale algorithm.

In particular: Use multiple grid invocations to achieve inter-workgroup synchronization.

With material by M. Harris (Nvidia Corp.)
```c
__kernel void reduce0(__global T *g_idata, __global T *g_odata,
       unsigned int n, __local T *ldata)
{
    unsigned int lid = get_local_id (0);
    unsigned int i = get_global_id (0);

    ldata[lid] = (i < n) ? g_idata[i] : 0;
    barrier (CLK_LOCAL_MEM_FENCE);

    for(unsigned int s=1; s < get_local_size (0); s *= 2)
    {
        if ((lid % (2*s)) == 0)
            ldata[lid] += ldata[lid + s];
        barrier (CLK_LOCAL_MEM_FENCE);
    }

    if (lid == 0) g_odata[get_group_id(0)] = ldata[0];
}
```
Interleaved Addressing

Values (shared memory):

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Thread IDs</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stride 1</td>
<td>0 2 4 6 8 10 12 14</td>
<td>11 1 7 -1 -2 -2 8 5 -5 -3 9 7 11 11 2 2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 2</th>
<th>Thread IDs</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stride 2</td>
<td>0 4 8 12</td>
<td>18 1 7 -1 6 -2 8 5 4 -3 9 7 13 11 2 2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 3</th>
<th>Thread IDs</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stride 4</td>
<td>0 8</td>
<td>24 1 7 -1 6 -2 8 5 17 -3 9 7 13 11 2 2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 4</th>
<th>Thread IDs</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stride 8</td>
<td>0</td>
<td>41 1 7 -1 6 -2 8 5 17 -3 9 7 13 11 2 2</td>
</tr>
</tbody>
</table>

Issue: Slow modulo, Divergence

With material by M. Harris (Nvidia Corp.)
Interleaved Addressing

Values (shared memory)

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Thread IDs</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stride 1</td>
<td>0 2 4 6 8 10 12 14</td>
<td>11 1 7 -1 -2 -2 8 5 -5 -3 9 7 11 11 2 2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 2</th>
<th>Thread IDs</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stride 2</td>
<td>0 4 8 12</td>
<td>18 1 7 -1 6 -2 8 5 4 -3 9 7 13 11 2 2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 3</th>
<th>Thread IDs</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stride 4</td>
<td>0 8</td>
<td>24 1 7 -1 6 -2 8 5 17 -3 9 7 13 11 2 2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 4</th>
<th>Thread IDs</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stride 8</td>
<td>0</td>
<td>41 1 7 -1 6 -2 8 5 17 -3 9 7 13 11 2 2</td>
</tr>
</tbody>
</table>

Issue: Slow modulo, Divergence

With material by M. Harris (Nvidia Corp.)
__kernel void reduce2(__global T *g_idata, __global T *g_odata,
unsigned int n, __local T* ldata)
{
 unsigned int lid = get_local_id(0);
 unsigned int i = get_global_id(0);

 ldata[lid] = (i < n) ? g_idata[i] : 0;
 barrier (CLK_LOCAL_MEM_FENCE);

 for(unsigned int s = get_local_size(0)/2; s > 0; s >>= 1)
 {
 if (lid < s)
 ldata[lid] += ldata[lid + s];
 barrier (CLK_LOCAL_MEM_FENCE);
 }

 if (lid == 0) g_odata[get_local_size(0)] = ldata[0];
}
Sequential Addressing

Values (shared memory)

<table>
<thead>
<tr>
<th>Thread IDs</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>10 1 8 -1 0 -2 3 5 -2 -3 2 7 0 11 0 2</td>
</tr>
</tbody>
</table>

Step 1
Stride 8

Thread IDs

Values

Step 2
Stride 4

Thread IDs

Values

Step 3
Stride 2

Thread IDs

Values

Step 4
Stride 1

Thread IDs

Values

Better!

But still not “efficient.”

Only half of all work items after first round, then a quarter, . . .

With material by M. Harris (Nvidia Corp.)
Sequential Addressing

Values (shared memory)

<table>
<thead>
<tr>
<th></th>
<th>10</th>
<th>1</th>
<th>8</th>
<th>-1</th>
<th>0</th>
<th>-2</th>
<th>3</th>
<th>5</th>
<th>-2</th>
<th>-3</th>
<th>2</th>
<th>7</th>
<th>0</th>
<th>11</th>
<th>0</th>
<th>2</th>
</tr>
</thead>
</table>

Step 1
Stride 8

Thread IDs

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
</table>

Values

<table>
<thead>
<tr>
<th></th>
<th>8</th>
<th>-2</th>
<th>10</th>
<th>6</th>
<th>0</th>
<th>9</th>
<th>3</th>
<th>7</th>
<th>-2</th>
<th>-3</th>
<th>2</th>
<th>7</th>
<th>0</th>
<th>11</th>
<th>0</th>
<th>2</th>
</tr>
</thead>
</table>

Step 2
Stride 4

Thread IDs

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
</table>

Values

<table>
<thead>
<tr>
<th></th>
<th>8</th>
<th>7</th>
<th>13</th>
<th>13</th>
<th>0</th>
<th>9</th>
<th>3</th>
<th>7</th>
<th>-2</th>
<th>-3</th>
<th>2</th>
<th>7</th>
<th>0</th>
<th>11</th>
<th>0</th>
<th>2</th>
</tr>
</thead>
</table>

Step 3
Stride 2

Thread IDs

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
</table>

Values

<table>
<thead>
<tr>
<th></th>
<th>21</th>
<th>20</th>
<th>13</th>
<th>13</th>
<th>0</th>
<th>9</th>
<th>3</th>
<th>7</th>
<th>-2</th>
<th>-3</th>
<th>2</th>
<th>7</th>
<th>0</th>
<th>11</th>
<th>0</th>
<th>2</th>
</tr>
</thead>
</table>

Step 4
Stride 1

Thread IDs

<table>
<thead>
<tr>
<th></th>
<th>0</th>
</tr>
</thead>
</table>

Values

<table>
<thead>
<tr>
<th></th>
<th>41</th>
<th>20</th>
<th>13</th>
<th>13</th>
<th>0</th>
<th>9</th>
<th>3</th>
<th>7</th>
<th>-2</th>
<th>-3</th>
<th>2</th>
<th>7</th>
<th>0</th>
<th>11</th>
<th>0</th>
<th>2</th>
</tr>
</thead>
</table>

Better! But still not “efficient”.

Only half of all work items after first round, then a quarter, . . .
Thinking about Parallel Complexity

Distinguish:

- **Time on** T processors: T_P
- **Step Complexity/Span** T_∞: Minimum number of steps taken if an infinite number of processors are available
- **Work per step** S_t
- **Work Complexity/Work** $T_1 = \sum_{t=1}^{T_\infty} S_t$: Total number of operations performed
- **Parallelism** T_1 / T_∞: average amount of work along span
 - $P > T_1 / T_\infty$ doesn’t make sense.

Algorithm-specific!
Thinking about Parallel Complexity

Distinguish:

- Time on T processors: T_P
- **Step Complexity/Span** T_∞: Minimum number of steps taken if an infinite number of processors are available
- Work per step S_t
- **Work Complexity/Work** $T_1 = \sum_{t=1}^{T_\infty} S_t$: Total number of operations performed
- **Parallelism** T_1 / T_∞: average amount of work along span
 - $P > T_1 / T_\infty$ doesn’t make sense.

Algorithm-specific!

Lower Bounds:

- $T_P \geq \ldots$? (in terms of T_1)
- $T_P \geq \ldots$? (in terms of T_∞)
Number of Items N
Actual work to be done: $W = O(N)$ additions.

Step Complexity: Let $d = \lceil \log_2 N \rceil$. Then $T_\infty = d$, $S_t = O(2^{d-t})$.

Work Complexity:

$$T_1 = \sum_{t=1}^{T} S_t = O \left(\sum_{t=1}^{T} 2^{d-t} \right) = O(2^d) = O(N)$$
Parallel Complexity for Reduction

Number of Items N
Actual work to be done: $W = O(N)$ additions.

Step Complexity: Let $d = \lceil \log_2 N \rceil$. Then $T_\infty = d$, $S_t = O(2^{d-t})$.

Work Complexity:

$$T_1 = \sum_{t=1}^{T} S_t = O \left(\sum_{t=1}^{T} 2^{d-t} \right) = O(2^d) = O(N)$$

“Work-efficient:” $T_1 \sim W$.
Theorem (Graham ‘68, Brent ‘75)
A parallel algorithm with span T_∞ and work complexity T_1 can be executed on a shared-memory machine with P processors in no more than

$$T_P \leq \frac{T_1}{P} + T_\infty$$

Observations:
- Think of T_∞ as the length of the “critical path”.
- The first summand can be made to go away by increasing P.
- Only valid for shared-memory.
Greedy Scheduling

Theorem (Graham ’68, Brent ’75)
A parallel algorithm with span T_∞ and work complexity T_1 can be executed on a shared-memory machine with P processors in no more than

$$T_P \leq \frac{T_1}{P} + T_\infty$$

steps.

Observations:
- Think of T_∞ as the length of the “critical path”.
- The first summand can be made to go away by increasing P.
- Only valid for shared-memory.
- Estimate for $P = 1$?
- Proof sketch?
Brent for Reduction

Again: Number of items N.

Brent says

$$T_P = O \left(\frac{T_1}{P} + T_\infty \right) = O \left(\frac{N}{P} + \log N \right).$$

Within a work group: $N = P \Rightarrow T_N = O(\log N)$.
Brent for Reduction

Again: Number of items N.

Brent says

$$T_P = O\left(\frac{T_1}{P} + T_\infty\right) = O\left(\frac{N}{P} + \log N\right).$$

Within a work group: $N = P \Rightarrow T_N = O(\log N)$.

But: Work groups are an illusion! Machine has finite width. Thus $T_P > O(\log N)$! How low can we take P before we hurt our asymptotic runtime T_P?
Brent for Reduction

Again: Number of items N.

Brent says

$$T_P = O \left(\frac{T_1}{P} + T_\infty \right) = O \left(\frac{N}{P} + \log N \right).$$

Within a work group: $N = P \Rightarrow T_N = O(\log N)$.

But: Work groups are an illusion! Machine has finite width. Thus $T_P > O(\log N)$! How low can we take P before we hurt our asymptotic runtime T_P?

Asymptotically optimal $T_P = O(\log N)$ for

$$P \geq \frac{N}{\log N}.$$

Result: We’re free to reduce P by a factor of $(\log N)$ without increasing T_P. \Rightarrow Do $(\log N)$ items in sequence per work item without increasing asymptotic T_P.

Think of this in terms of cost:

Cost $= P \times T_P$
Brent for Reduction

Again: Number of items N.

Brent says

$$T_P = O\left(\frac{P}{\sqrt{P}}\right)$$

Within a work group: $N = P \Rightarrow T_N = O(\log N)$.

But: Work groups are an illusion! Machine has finite width.

Thus $T_P > O(\log N)$! How low can we take P before we hurt our asymptotic runtime T_P?

Asymptotically optimal $T_P = O(\log N)$ for

$$P \geq \frac{N}{\log N}.$$

Result: We’re free to reduce P by a factor of $(\log N)$ without increasing T_P. ⇒ Do $(\log N)$ items in sequence per work item without increasing asymptotic T_P.

Think of this in terms of cost:

$$\text{Cost} = P \times T_P$$
Brent for Reduction

Again: Number of items N.

Brent says

$$T_P = O\left(T_1 P + T_\infty \right) = O\left(N P + \log N \right).$$

Within a work group:

$$N = P \Rightarrow T_N = O(\log N).$$

But: Work groups are an illusion! Machine has finite width. Thus $T_P > O(\log N)!$ How low can we take P before we hurt our asymptotic runtime T_P?

Asymptotically optimal $T_P = O(\log N)$ for

$$P \geq \frac{N}{\log N}.$$

Result: We’re free to reduce P by a factor of $(\log N)$ without increasing T_P. ⇒ Do $(\log N)$ items in sequence per work item without increasing asymptotic T_P.

Think of this in terms of cost:

$$\text{Cost} = P \times T_P$$

Brent gives lower bound on P.

Fewer Processors ⇒ less cost!
Brent for Reduction

Again: Number of items \(N \).

Brent says

\[
T_P = O\left(T_1 P + T_\infty \right) = O\left(N P + \log N \right).
\]

Within a work group:

\(N = P \Rightarrow T_N = O\left(\log N \right) \).

But: Work groups are an illusion! Machine has finite width.

Thus \(T_P > O\left(\log N \right)! \) How low can we take \(P \) before we hurt our asymptotic runtime \(T_P \)?

Asymptotically optimal \(T_P = O\left(\log N \right) \) for

\[
P \geq \frac{N}{\log N}.
\]

Result: We’re free to reduce \(P \) by a factor of \(\log N \) without increasing \(T_P \). \(\Rightarrow \) Do \(\log N \) items in sequence per work item without increasing asymptotic \(T_P \).

Think of this in terms of cost:

\[
\text{Cost} = P \times T_P
\]

Brent gives lower bound on \(P \).

Fewer Processors \(\Rightarrow \) less cost!

“Algorithm cascading”
void reduce6(__global T *g_idata, __global T *g_odata, unsigned int n, volatile __local T* ldata) {
 unsigned int lid = get_local_id(0);
 unsigned int i = get_group_id(0)*(
 get_local_size(0)*2) + get_local_id(0);
 unsigned int gridSize = GROUP_SIZE*2*get_num_groups(0);
 ldata[lid] = 0;

 while (i < n) {
 ldata[lid] += g_idata[i];
 if (i + GROUP_SIZE < n)
 ldata[lid] += g_idata[i+GROUP_SIZE];
 i += gridSize;
 }
 barrier(CLK_LOCAL_MEM_FENCE);
if (GROUP_SIZE >= 512) {
 if (lid < 256) { ldata[lid] += ldata[lid + 256]; }
 barrier (CLK_LOCAL_MEM_FENCE);
}

// ...
if (GROUP_SIZE >= 128) {
 /* ... */
}

if (lid < 32) {
 if (GROUP_SIZE >= 64) { ldata[lid] += ldata[lid + 32]; }
 if (GROUP_SIZE >= 32) { ldata[lid] += ldata[lid + 16]; }
 // ...
 if (GROUP_SIZE >= 2) { ldata[lid] += ldata[lid + 1]; }
}

if (lid == 0) g_odata[get_group_id(0)] = ldata[0];
Performance Comparison

With material by M. Harris (Nvidia Corp.)

Embarrassing Partition Pipelines Reduction Scan
Reduction: Examples

- Sum, Inner Product, Norm
 - Occurs in iterative methods
- Minimum, Maximum
- Data Analysis
 - Evaluation of Monte Carlo Simulations
- List Concatenation, Set Union
- Matrix-Vector product (but...)

Embarrassing Partition Pipelines Reduction Scan
Reduction: Issues

- When adding: floating point cancellation?
- Serial order goes faster: can use registers for intermediate results
- Requires availability of neutral element
- GPU-Reduce: Optimization sensitive to data type
Map-Reduce

\[y = f(\cdots f(f(g(x_1), g(x_2)),\]
\[g(x_3)), \ldots, g(x_N)) \]

where \(N \) is the input size.

- Lisp naming, again
- Mild generalization of reduction
MapReduce: Discussion

MapReduce \geq map + reduce:

- Used by Google (and many others) for large-scale data processing
- Map generates (key, value) pairs
 - Reduce operates only on pairs with identical keys
 - Remaining output sorted by key
- Represent all data as character strings
 - User must convert to/from internal repr.
- Messy implementation
 - Parallelization, fault tolerance, monitoring, data management, load balance, re-run “stragglers”, data locality
- Works for Internet-size data
- Simple to use even for inexperienced users
MapReduce: Examples

- String search
- (e.g. URL) Hit count from Log
- Reverse web-link graph
 - desired: (target URL, sources)
- Sort
- Indexing
 - desired: (word, document IDs)
- Machine Learning, Clustering, ...
Outline

Embarrassingly Parallel

Partition

Pipelines

Reduction

Scan
\[y_1 = x_1 \]
\[y_2 = f(y_1, x_2) \]
\[\vdots \]
\[y_N = f(y_{N-1}, x_N) \]

where \(N \) is the input size.

- Also called “prefix sum”.
- Or cumulative sum (‘\texttt{cumsum}’) by Matlab/NumPy.
This can't possibly be parallelized. Or can it?
This can’t possibly be parallelized. Or can it?
This can’t possibly be parallelized. Or can it? Again: Need assumptions on \(f \). Associativity, commutativity.
Scan: Implementation

Work-efficient?
Two sweeps: Upward, downward, both tree-shape

On upward sweep:
- Get values L and R from left and right child
- Save L in local variable Mine
- Compute $\text{Tmp} = L + R$ and pass to parent

On downward sweep:
- Get value Tmp from parent
- Send Tmp to left child
- Send $\text{Tmp} + \text{Mine}$ to right child
Two sweeps: Upward, downward, both tree-shape

On upward sweep:
- Get values L and R from left and right child
- Save L in local variable Mine
- Compute $\text{Tmp} = L + R$ and pass to parent

On downward sweep:
- Get value Tmp from parent
- Send Tmp to left child
- Send Tmp + Mine to right child

Work-efficient?
Span rel. to first attempt?
Scan: Examples

- Anything with a loop-carried dependence
- One row of Gauss-Seidel
- One row of triangular solve
- Segment numbering if boundaries are known
- Low-level building block for many higher-level algorithms
- FIR/IIR Filtering
- G.E. Blelloch: Prefix Sums and their Applications
Scan: Issues

- Subtlety: Inclusive/Exclusive Scan
- Pattern sometimes hard to recognize
 - But shows up surprisingly often
 - Need to prove associativity/commutativity
- Useful in Implementation: algorithm cascading
 - Do sequential scan on parts, then parallelize at coarser granularities
Questions?