Theory of Computation
Homework 8.

Due Date: Thursday, November 11.

1. Let Rec-GNFA = \{⟨M, w⟩ | M is a GNFA and w ∈ L(M)\}
 Show that Rec-GNFA is decidable.

2. (a) Show that if \(R \subseteq S \) if and only if \(R \cap \overline{S} = \emptyset \).
 (b) Let Rec-Contain = \{⟨MR, MS⟩ | MR and MS are DFAs recognizing regular
 languages \(R \) and \(S \) respectively, and \(R \subseteq S \)\}.
 Show that Rec-Contain is decidable.
 Hint: Use a reduction to Empty-DFA.

3. Let Eq-DFA-NFA = \{⟨M, N⟩ | M is a DFA and N
 is an NFA with \(L(M) = L(N) \)\}.
 Show that Eq-DFA-NFA is decidable.

4. Let Eq-Rev = \{⟨M⟩ | M is a DFA, \(L = L(M) \), \(M^R \) is an NFA recognizing \(L^R \),
 and \(L(M) = L(M^R) \)\}.
 Show that Eq-Rev is decidable. You may assume the result of Chapter 2, No. 8.

5. Let Pumpable = \{⟨M⟩ | M is a DFA,
 and for every \(w \in L(M) \), \(w \) is pumpable\}.
 Show that Pumpable is decidable.
 Hint. What can you say about M’s graph if every string it recognizes is pumpable?
 Your algorithm needs to test this property.