Methods for Deriving Auxiliary Invariants

The methods for deriving auxiliary invariants (which can be used to strengthen a non-inductive assertion) can be partitioned into

- **Bottom-Up** methods. Analyze the program independently of the goal assertion to be proven.
- **Top-Down** methods. Take into account both the program and the assertion whose invariance we wish to prove.

The successive strengthening method we have previously described, using the TLV tool, is a typical top-down method.

We will proceed to describe additional methods of each of the classes, starting with bottom-up methods.

Forward Propagation

Consider a program segment of the form $\ell_1: y := e; \ell_2$, and assume that

- We previously derived an invariant $\text{at } \ell_1 \rightarrow \varphi$.
- The assignment $y := e$ preserves the assertion φ. For example, φ does not depend on y.
- No statement parallel to this process can invalidate φ.

Then, we can conclude that $\text{at } \ell_2 \rightarrow \varphi$ is also an invariant.

Transition Affirmed Invariants

In some cases, we can identify that all transitions entering location ℓ, cause an assertion φ to hold in the post-state of the transition. If, in addition, no action of a parallel process can invalidate φ then the assertion

$$\text{at } \ell \rightarrow \varphi$$

is an invariant.

Following are some configurations of statements and the candidate assertions corresponding to them

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Candidate</th>
<th>Provided</th>
</tr>
</thead>
<tbody>
<tr>
<td>$y := f(\vec{x}); \ell_1$</td>
<td>$\text{at } \ell_1 \rightarrow y = f(\vec{x})$</td>
<td>$\varphi \neq \vec{x}$</td>
</tr>
<tr>
<td><code>await c; ℓ_1</code></td>
<td>$\text{at } \ell_1 \rightarrow c$</td>
<td></td>
</tr>
<tr>
<td><code>while c do $\ell_1 : \ell_2$</code></td>
<td>$\begin{cases} \text{at } \ell_1 \rightarrow c \ \text{at } \ell_2 \rightarrow \neg c \end{cases}$</td>
<td></td>
</tr>
<tr>
<td><code>if c then $\ell_1 : S_1$ else $\ell_2 : S_2$</code></td>
<td>$\begin{cases} \text{at } \ell_1 \rightarrow c \ \text{at } \ell_2 \rightarrow \neg c \end{cases}$</td>
<td></td>
</tr>
</tbody>
</table>

For the first two cases, if $\ell_i = \ell_0$ for some process, we also have to establish $\Theta \rightarrow \varphi$.

Example: Peterson’s Mutual Exclusion for 2 Processes

```
local y1, y2 : boolean where y1 = y2 = 0
s : {1, 2} where s = 1

\[
P_1 :: \begin{cases} 
\ell_0 : \text{loop forever do} \\
\ell_1 : \text{Non-Critical} \\
\ell_2 : (y_1, s) := (1, 1) \\
\ell_3 : \text{Critical} \\
\ell_4 : y_1 := 0 \\
\ell_5 : y_1 := 0 \\
\end{cases}
\parallel
P_2 :: \begin{cases} 
m_0 : \text{loop forever do} \\
m_1 : \text{Non-Critical} \\
m_2 : (y_2, s) := (1, 2) \\
m_3 : \text{await} y_1 = 0 \lor s \neq 2 \\
m_4 : \text{Critical} \\
m_5 : y_2 := 0 \\
\end{cases}
\]
```

- Using the method of transition affirmed invariants, we can derive the invariant $\text{at } \ell_0 \rightarrow y_1 = 0$.
- Applying the second clause of the transition affirmed invariants method to statement ℓ_3, we can derive the invariant $\text{at } \ell_4 \rightarrow y_2 = 0 \lor s \neq 1$.

This requires showing that no statement parallel to ℓ_2 can invalidate the assertion $y_2 = 0 \lor s \neq 1$. Special attention must be given to m_2 which modifies both y_2 and s. However, since it sets s to $2 \neq 1$, it only revalidates $y_2 = 0 \lor s \neq 1$.
Loop Derived Invariants

Consider the following loop:

\[
\begin{align*}
\ell_j &: \quad i := 1 \\
\ell_{j+1} &: \quad \text{while } i \leq n \text{ do} \\
\ell_{j+2} &: \quad \ldots \\
\ell_k &: \quad \ldots \\
\ell_{k+1} &: \quad i := i + 1 \\
\ell_{k+2} &: \quad \ldots
\end{align*}
\]

where none of the statements \(\ell_{j+2}, \ldots, \ell_k\) and no statement parallel to this process modifies \(i\).

Then, we can conclude the following invariant:

\[
\text{at}_{\text{\ell}_{j+1..k+1}} \rightarrow 1 \leq n + \text{at}_{\ell_{j+1}} \quad \land \quad \text{at}_{\ell_{k+2}} \rightarrow i = n + 1
\]

We can draw similar conclusions about the loop

\[
\ell_{j+1} : \quad \text{for } i = 1 \text{ to } n \text{ do } S; \quad \ell_{k+2} :
\]

Top-Down Methods: Systematic Strengthening

Premise I2 of rule \(\text{INV}\) requires establishing the validity of \(\varphi \land \rho \rightarrow \varphi'\). As \(\rho\) consists of a disjunction \(\bigvee \ell \rho_\ell\), where each statement \(\ell\) contributes its own transition relation \(\rho_\ell\), this is often established by showing separately

\[
\varphi \land \rho_\ell \rightarrow \varphi'
\]

for each statement \(\ell\). Equivalently, this can be written as \(\varphi \rightarrow \text{pre}(\ell, \varphi)\), where \(\text{pre}(\ell, \varphi) = \bigvee V' \land \rho_\ell \rightarrow \varphi'\).

In our case, all individual transition relations have the form \(\rho_\ell : c_\ell \land V' = E_\ell\), where \(c_\ell\) is a boolean expression over \(V\), and \(E_\ell\) is a set of expressions defining the new values of the variables \(V\). For these cases, the \(\text{pre}\)-condition \(\text{pre}(\ell, \varphi)\) can be simplified to

\[
\text{pre}(\ell, \varphi) : \quad c_\ell \land \varphi(E_\ell)
\]

where \(\varphi(E_\ell)\) is obtained from \(\varphi\) by substituting the expressions \(E_\ell\) for the state variables \(V\).

Claim 14. If the assertion \(\varphi\) is an invariant of system \(D\), then so is \(\text{pre}(\ell, \varphi)\), for every statement \(\ell\).

This claim leads to the following strengthening strategy:

Strategy 1. If the verification condition \(\varphi \land \rho_\ell \rightarrow \varphi'\) fails to be \(D\)-valid, strengthen \(\varphi\) by conjuncting it with \(\text{pre}(\ell, \varphi)\).

Example of Applying the Strategy

Reconsider program \(\text{PETE}\text{RSON2}\). We may start the search for an invariant with the assertion of mutual exclusion

\[
\varphi_0 : \quad \pi_1 \neq 4 \lor \pi_2 \neq 4
\]

Checking the verification conditions, we find out that this assertion fails to be inductive after execution of the statements \(\ell_3\) and \(m_3\). Observing that the enabling condition for \(\ell_3\) is \(c_{\ell_3} : \pi_1 = 3 \land (y_2 = 0 \lor s = 1)\) and the variable assignment is \(\pi_1 := 4\), we compute \(\text{pre}(\ell_3, \varphi_0)\) and obtain:

\[
\varphi_1 : \quad \pi_1 = 3 \land (y_2 = 0 \lor s = 1) \rightarrow (4 \neq 4 \lor \pi_2 \neq 4) \sim \at_{\ell_3} \land \at_{m_4} \rightarrow y_2 \neq 0 \land s = 1
\]

In a similar way, \(\text{pre}(m_3, \varphi_0)\) yields

\[
\varphi_2 : \quad \at_{\ell_1} \land \at_{m_3} \rightarrow y_1 \neq 0 \land s = 2
\]

Together with the bottom-up derived invariants

\[
\varphi_3 : \quad \at_{\ell_3..5} \rightarrow y_1 = 1 \quad \varphi_4 : \quad \at_{m_3..5} \rightarrow y_2 = 1,
\]

This set of assertions is inductive and implies \(\varphi_0\) which specifies mutual exclusion.
Construction of Linear Invariants

An integer variable y is called linear if the modification of variable y in each statement has the form $y' = y + c$ for some constant c (possibly 0).

We are looking for invariants of the form

$$\sum_{i=1}^{r} a_i \cdot y_i + \sum_{\ell \in L} b_{\ell} \cdot at_{\ell} = K$$

where y_1, \ldots, y_r are linear variables, a_i, b_j, and K are integer constants.

For a linear variable y and statement $\ell : S$, we define the increment $\Delta(y, \ell) = c$ if the execution of statement S adds the constant c to y.

For a location predicate ℓ_j and statement $\ell_i : S$, we define

$$\Delta(at_{\ell_j}, \ell_i) = \begin{cases} +1 & i = j - 1 \\ -1 & i = j \\ 0 & i \notin \{j, j - 1\} \end{cases}$$

For an expression E and a sequence of consecutive statements $\ell_i : S_i; \ldots; \ell_j : S_j$, we define the accumulated increment

$$\Delta(E, \ell_{i..j}) = \Delta(E, \ell_i) + \cdots + \Delta(E, \ell_j)$$

Necessary Conditions

Assume that

$$\sum_{i=1}^{r} a_i \cdot y_i + \sum_{\ell \in L} b_{\ell} \cdot at_{\ell} = K$$

is an invariant of a program consisting of the parallel processes P_1, \ldots, P_r.

Applying $\Delta(\cdot, P_j)$ to both sides of this equality, we obtain

$$\sum_{i=1}^{r} a_i \cdot \Delta(y_i, P_j) + \sum_{\ell \in L} b_{\ell} \cdot \Delta(at_{\ell}, P_j) = 0$$

We show now that $\Delta(at_{\ell_i}, P_j) = 0$ for all ℓ_i and P_j. If $\ell_i \notin L_j$, then no statement in P_j can modify ℓ_i. If $\ell_i \in L_j$, then $\Delta(at_{\ell_i}, P_j)$ sums together $\Delta(at_{\ell_i}, \ell_{i-1}) = +1$ and $\Delta(at_{\ell_i}, \ell_i) = -1$, yielding 0.

We conclude that the coefficients a_i must satisfy the equations

$$\sum_{i=1}^{r} a_i \cdot \Delta(y_i, P_j) = 0$$

for every $j = 1, \ldots, n$.

Computing the Bodies

Solve and find a basis of independent solution to the set of linear equations

$$\sum_{i=1}^{r} a_i \cdot \Delta(y_i, P_j) = 0.$$

Any such solution provides a possible body.
Lecture 8: Deriving Invariants A. Pnueli

Example: Mutual Exclusion with Two Semaphores

Consider program TWO-SEM:
\[y_1, y_2 : \text{natural initially, } y_1 = 1, y_2 = 0 \]

This program has the linear variables \(y_1, y_2 \). Their process-accumulated increments \(\Delta(y_1, P_j) \) are given by:

\[
\begin{bmatrix}
\ell_1 : \text{Non-critical} \\
\ell_2 : \text{request } y_1 \\
\ell_3 : \text{Critical} \\
\ell_4 : \text{release } y_2
\end{bmatrix}
\]

\[
\begin{bmatrix}
m_0 : \text{loop forever do} \\
m_1 : \text{Non-critical} \\
m_2 : \text{request } y_2 \\
m_3 : \text{Critical} \\
m_4 : \text{release } y_1
\end{bmatrix}
\]

This gives rise to the set of equations:
\[
\begin{align*}
-a_1 + a_2 &= 0 \\
a_1 - a_2 &= 0
\end{align*}
\]

whose solution basis can be given by \(a_1 = a_2 = 1 \). Thus, any linear invariant for this program will be of the form

\[y_1 + y_2 + \cdots = K \]

Computing the Right-Hand-Side Constant

Assume that the initial values of the linear variables \(y_1, \ldots, y_r \) are given, respectively, by \(\eta_1, \ldots, \eta_r \). Then, the right-hand-side constant \(K \) is given by

\[K = \sum_{i=1}^{r} a_i \cdot \eta_i \]

Thus, for program TWO-SEM, the full linear invariant is given by

\[y_1 + y_2 + a_1 \cdot \ell_{3,4} + a_2 \cdot m_{3,4} = 1 \]

since the initial values are \(\eta_1 = 1 \) and \(\eta_2 = 0 \). This together with the obvious invariants \(y_1 \geq 0 \) and \(y_2 \geq 0 \) are sufficient in order to establish mutual exclusion.

Example: Producer-Consumer

Consider the following program PROD-CONS:

\[
\begin{bmatrix}
l_0 : \text{loop forever do} \\
l_1 : \text{Produce } x \\
l_2 : \text{request } ne \\
l_3 : \text{request } r \\
l_4 : L := L \circ x \\
l_5 : \text{release } r \\
l_6 : \text{release } nf
\end{bmatrix}
\]

\[
\begin{bmatrix}
m_0 : \text{loop forever do} \\
m_1 : \text{request } nf \\
m_2 : \text{request } r \\
m_3 : (y, L) := (hd(L), tl(L)) \\
m_4 : \text{release } r \\
m_5 : \text{release } ne \\
m_6 : \text{Consume } y
\end{bmatrix}
\]

Process \(Prod \) produces values and moves them to process \(Cons \) for consumption. The values are transferred via the buffer \(L \). We wish to guarantee that the size of the buffer never exceeds the constant \(N \). For that purpose, we maintain the semaphore \(ne \) which counts the number of empty slots within \(L \) and the semaphore \(nf \) which maintains the number of occupied slots within \(L \). Formally, the requirements are...
Lecture 8: Deriving Invariants

A. Pnueli

Computation Continued

To determine the coefficients $b_ℓ$, we compute the accumulated increments $\Delta(B_i, ℓ_{0..j-1})$ and $\Delta(B_i, ℓ_{0..j-1})$ as follows:

<table>
<thead>
<tr>
<th>j: 2</th>
<th>j: 3</th>
<th>j: 4</th>
<th>j: 5</th>
<th>j: 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta(B_1, ℓ_{0..j-1})$</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>$\Delta(B_2, ℓ_{0..j-1})$</td>
<td>0</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>$\Delta(B_3, ℓ_{0..j-1})$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

After computing the right-hand-constants, we conclude with the following three invariants:

$\varphi_1: \neg(at_{-ℓ_4} \land at_{-m_3})$

Locations $ℓ_4$ and m_3 are exclusive.

$\varphi_2: at_{-ℓ_4} \rightarrow |L| < N$

Never attempt to add a value to a full buffer.

$\varphi_3: at_{-m_3} \rightarrow |L| > 0$

Never attempt to dequeue an empty buffer.

Analysis of Reactive Systems, NYU, Spring, 2006 145

Computing Linear Invariants for PROD-CONS

As linear variables we take $\{r, ne, nf, |L|\}$. The process-accumulated increments for these four variables are given by

| v: r | v: ne | v: nf | v: $|L|$ |
|---|---|---|---|
| $\Delta(v, P_1)$ | 0 | -1 | +1 | +1 |
| $\Delta(v, P_2)$ | 0 | +1 | -1 | -1 |

This gives rise to the following set of equations:

$0 \cdot a_r - a_{ne} + a_{nf} + a_{|L|} = 0$

$0 \cdot a_r + a_{ne} - a_{nf} - a_{|L|} = 0$

Since we have 4 variables and 1 independent equation, there is a solution basis containing 3 independent solutions. These can be given as

<table>
<thead>
<tr>
<th>a_1</th>
<th>a_2</th>
<th>a_3</th>
<th>a_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>1</td>
</tr>
</tbody>
</table>

Leading to the bodies:

$B_1: r$

$B_2: ne + |L|$

$B_3: -nf + |L|$

Analysis of Reactive Systems, NYU, Spring, 2006 146

Drawing Conclusions

The three obtained linear invariants

$I_1: r + at_{-ℓ_4,5} + at_{-m_3,4} = 1$

$I_2: ne + |L| + at_{-ℓ_3,4} + at_{-m_4,5} = N$

$I_3: -nf + |L| - at_{-ℓ_5,6} - at_{-m_2,3} = 0$

imply the main safety properties of program PROD-CONS.

- Property $\varphi_1: \neg(at_{-ℓ_4} \land at_{-m_3})$ follows from I_1, because $at_{-ℓ_4} = at_{-m_3} = 1$ implies $r = -1$ which is impossible.

- From I_2, we obtain

$|L| = N - ne - at_{-ℓ_3,4} - at_{-m_4,5} \leq N - at_{-ℓ_4}$

which implies $\varphi_2: at_{-ℓ_4} \rightarrow |L| < N$ since, when $at_{-ℓ_4} = 1$, $|L| \leq N - 1$.

- From I_3, we obtain

$|L| = nf + at_{-ℓ_5,6} + at_{-m_2,3} \geq at_{-m_3}$

which implies $\varphi_3: at_{-m_3} \rightarrow |L| > 0$ since, when $at_{-m_3} = 1$, $|L| \geq 1$.

Analysis of Reactive Systems, NYU, Spring, 2006 147