Review

- Theories
- Satisfiability Modulo Theories
- Congruence Closure
- Shostak's Method

Outline

- Satisfiability Modulo Theories
- Theory Solvers
- Combining Decision Procedures
- Abstract DPLL Modulo Theories
- Example Application: Translation Validation

Motivation

Automatic analysis of computer hardware and software requires engines capable of reasoning efficiently about large and complex systems.

Boolean engines such as Binary Decision Diagrams and SAT solvers are typical engines of choice for today’s industrial verification applications.

However, systems are usually designed and modeled at a higher level than the Boolean level and the translation to Boolean logic can be expensive.

A primary goal of research in Satisfiability Modulo Theories (SMT) is to create verification engines that can reason natively at a higher level of abstraction, while still retaining the speed and automation of today’s Boolean engines.
Combining Decision Procedures

Often, verification conditions are expressed in a language which mixes several theories.

A natural question is whether one can use decision procedures for individual theories to construct a decision procedure for the union theory.

More precisely, suppose that \(\Sigma_1, \ldots, \Sigma_n \) are \(n \) signatures, and for \(i = 1, \ldots, n \), let \(T_i \) be a \(\Sigma_i \)-theory.

Then, let \(\text{Sat}_i \) be a decision procedure for deciding the \(T_i \)-satisfiability of \(\Sigma_i \)-formulas.

How can we use these to construct a decision procedure for the \(T \)-satisfiability of \(\Sigma \)-formulas, where \(T = \bigcup T_i \) and \(\Sigma = \bigcup \Sigma_i \).

The Nelson-Oppen Method

A very general method for combining decision procedures is the Nelson-Oppen method.

This method is applicable when

1. The signatures \(\Sigma_i \) are disjoint.
2. The theories \(T_i \) are stably-infinite.
 - A \(\Sigma \)-theory \(T \) is stably-infinite if every \(T \)-satisfiable quantifier-free \(\Sigma \)-formula is satisfiable in an infinite model.
3. The formulas to be tested for satisfiability are quantifier-free.

In practice, only the third requirement is a significant restriction.

We may also restrict our attention to conjunctions of literals.

This is because any quantifier-free formula can be put into disjunctive normal form. It then suffices to check the satisfiability of each conjunction.

The Nelson-Oppen Method

Before explaining the procedure in detail, we need the following definitions.

1. For \(i = 1, \ldots, n \), a member of \(\Sigma_i \) is an \(i \)-symbol.
2. A \(\Sigma \)-term \(t \) is an \(i \)-term if it is a variable, a constant \(i \)-symbol, or the application of a functional \(i \)-symbol.
3. An \(i \)-predicate is an application of a predicate \(i \)-symbol.
4. An atomic \(i \)-formula is an \(i \)-predicate or an equation whose left hand side is an \(i \)-term (for equations whose left-hand-sides are variables, we arbitrarily choose a theory \(T_i \) to associate with each variable).
5. An \(i \)-literal is an atomic \(i \)-formula or the negation of an atomic \(i \)-formula.
6. An occurrence of a term \(t \) in either a term or a formula is \(i \)-alien if \(t \) is a \(j \)-term with \(i \neq j \) and all of its super-terms (if any) are \(i \)-terms.
7. An \(i \)-term or \(i \)-literal is pure if it contains only \(i \)-symbols.
The Nelson-Oppen Method

It is easy to see that ϕ is T-satisfiable if $\phi_1 \land \ldots \land \phi_n$ is T-satisfiable. Furthermore, because each ϕ_i is a Σ_i-formula, we can run Sat_i on each ϕ_i. Clearly, if Sat_i reports that any ϕ_i is unsatisfiable, then ϕ is unsatisfiable.

But the converse is not true in general.

We need a way for the decision procedures to communicate with each other about shared variables.

First a definition: If S is a set of terms and \sim is an equivalence relation on S, then the arrangement of S induced by \sim is $Ar_{\sim} = \{x = y \mid x \sim y\} \cup \{x \neq y \mid x \not{\sim} y\}$.

Example

Consider the combination of the theory T_Z with the theory T_E of equality. Let $\phi = \leq x \land x \leq 2 \land f(x) \neq f(1) \land f(x) \neq f(2)$.

Is this satisfiable? No.

To determine this using the above algorithm, we first convert ϕ to a separate form:

$\phi_Z = \leq x \land x \leq 2 \land y = 1 \land z = 2$
$\phi_E = f(x) \neq f(y) \land f(x) \neq f(z)$

Now, the shared variables are $\{x, y, z\}$. There are 5 possible arrangements based on equivalence classes of $x, y,$ and z:

1. $\{x = y, x = z, y = z\}$: inconsistent with ϕ_E.
2. $\{x = y, x \neq z, y \neq z\}$: inconsistent with ϕ_E.
3. $\{x \neq y, x = z, y \neq z\}$: inconsistent with ϕ_E.
4. $\{x \neq y, x \neq z, y = z\}$: inconsistent with ϕ_E.
5. $\{x \neq y, x \neq z, y \neq z\}$: inconsistent with ϕ_Z.

Correctness of Nelson-Oppen

We define an interpretation of a signature Σ to be a model of Σ together with a variable assignment. If A is an interpretation, we write $A \models \phi$ to mean that ϕ is satisfied by the model and variable assignment contained in A.

Two interpretations A and B are isomorphic if there exists an isomorphism h of the model of A into the model of B and $h(x^A) = x^B$ for each variable x (where x^A signifies the value assigned to x by the variable assignment of A).

We furthermore define $A_{\Sigma, V}$ to be the restriction of A to the symbols in Σ and the variables in V.

Theorem

Let Σ_1 and Σ_2 be signatures, and for $i = 1, 2$, let ϕ_i be a set of Σ_i-formulas, and V_i the set of variables appearing in ϕ_i. Then $\phi_1 \cup \phi_2$ is satisfiable iff there exists a Σ_1-interpretation A satisfying ϕ_1 and a Σ_2-interpretation B satisfying ϕ_2 such that:

$A_{\Sigma_1 \cap \Sigma_2, V_1 \cap V_2}$ is isomorphic to $B_{\Sigma_1 \cap \Sigma_2, V_1 \cap V_2}$.
Correctness of Nelson-Oppen

Proof

Let $\Sigma = \Sigma_1 \cap \Sigma_2$ and $V = V_1 \cap V_2$. Suppose $\phi_1 \cup \phi_2$ is satisfiable. Let M be an interpretation satisfying $\phi_1 \cup \phi_2$. If we let $A = M^{\Sigma_1, V_1}$ and $B = M^{\Sigma_2, V_2}$, then clearly

- $A \models \phi_1$
- $B \models \phi_2$
- A^{Σ_1, V_1} is isomorphic to B^{Σ_2, V_2}

On the other hand, suppose that we have A and B satisfying the three conditions listed above. Let h be an isomorphism from A^{Σ_1, V_1} to B^{Σ_2, V_2}.

We define an interpretation M as follows:

- $\text{dom}(M) = \text{dom}(A)$
- For each variable or constant u, $u^M = \begin{cases} u^A & \text{if } u \in (\Sigma_1^C \cup V_1) \\ h^{-1}(u^B) & \text{otherwise} \end{cases}$

Correctness of Nelson-Oppen

Theorem

Let Σ_1 and Σ_2 be signatures, with $\Sigma_1 \cap \Sigma_2 = \emptyset$, and for $i = 1, 2$, let ϕ_i be a set of Σ_i-formulas, and V_i the set of variables appearing in ϕ_i. As before, let $V = V_1 \cap V_2$. Then $\phi_1 \cup \phi_2$ is satisfiable iff there exists an interpretation A satisfying ϕ_1 and an interpretation B satisfying ϕ_2 such that:

1. $|A| = |B|$, and
2. $x^A = y^A$ iff $x^B = y^B$ for every pair of variables $x, y \in V$.

Proof

Clearly, if $\phi_1 \cup \phi_2$ is satisfiable in some interpretation M, then the only if direction holds by letting $A = M$ and $B = M$.

Consider the converse. Let $h : V^A \rightarrow V^B$ be defined as $h(x^A) = x^B$. This definition is well-formed by property 2 above.

In fact, h is injective. To show that h is injective, let $h(a_1) = h(a_2)$. Then there exist variables $x, y \in V$ such that $a_1 = x^A, a_2 = y^A$, and $x^B = y^B$. By property 2, $x^A = y^A$, and therefore $a_1 = a_2$.

For function symbols of arity n,

$$f^M(a_1, \ldots, a_n) = \begin{cases} f^A(a_1, \ldots, a_n) & \text{if } f \in \Sigma_1^F \\ h^{-1}(f^B(h(a_1), \ldots, h(a_n))) & \text{otherwise} \end{cases}$$

For predicate symbols of arity n,

$$\begin{cases} (a_1, \ldots, a_n) \in P^M & \text{if } (a_1, \ldots, a_n) \in P^A \text{ if } P \in \Sigma_1^P \\ (a_1, \ldots, a_n) \in P^M & \text{iff } (h(a_1), \ldots, h(a_n)) \in P^B \text{ otherwise} \end{cases}$$

By construction, M^{Σ_1, V_1} is isomorphic to A. In addition, it is easy to verify that h is an isomorphism of M^{Σ_2, V_2} to B.

It follows by the homomorphism theorem that M satisfies $\phi_1 \cup \phi_2$. \square

Correctness of Nelson-Oppen

To show that h is surjective, let $b \in V^B$. Then there exists a variable $x \in V^B$ such that $x^B = b$. But then $h(x^A) = b$.

Since h is bijective, it follows that $|V^A| = |V^B|$, and since $|A| = |B|$, we also have that $|A - V^A| = |B - V^B|$. We can therefore extend h to a bijective function h' from A to B.

By construction, h' is an isomorphism of A^V to B^V. Thus, by the previous theorem, we can obtain an interpretation satisfying $\phi_1 \cup \phi_2$. \square
Correctness of Nelson-Oppen

We can finally prove the correctness of the nondeterministic Nelson-Oppen method.

Theorem

Let T_i be a stably-infinite Σ_i-theory, for $i = 1, 2$, and suppose that $\Sigma_1 \cap \Sigma_2 = \emptyset$. Also, let ϕ_i be a set of Σ_i literals, $i = 1, 2$, and let S be the set of variables appearing in both ϕ_1 and ϕ_2. Then ϕ_1 and ϕ_2 is $T_1 \cup T_2$-satisfiable iff there exists an equivalence relation \sim on S such that $\phi_i \cup Ar_{\sim}$ is T_i-satisfiable, $i = 1, 2$.

Proof

Suppose M is an interpretation satisfying $\phi_1 \cup \phi_2$. We define an equivalence relation $x \sim y$ iff $x, y \in S$ and $x^M = y^M$. By construction, M is a T_i-interpretation satisfying $\phi_i \cup Ar_{\sim}, i = 1, 2$.

Translation Validation

Ultimate Goal

- Guarantee correctness of optimising compilers

Important in:

- Safety critical applications, where standards and regulations require that every compiler be certified
- Compilation into silicon, where a translation error is critically expensive

Translator vs. Translation Validation

Rather than verify the translator itself, verify the results of each run of the translator.

Advantages

- Much easier
- Less sensitive to changes in the translator

Drawback

- Additional overhead during compilation
- But not enough to outweigh the benefits
Translation Validation

Two main types of optimizations

- **Structure preserving** optimizations
- **Structure modifying** optimizations

Structure preserving

- Use **Validate** proof rule

Validate Proof Rule

To verify that a target T correctly translates a source S, establish:

- **control abstraction** κ from T’s basic blocks to S’s basic blocks
- **data abstraction** α specifying source variables in terms of target expressions

$$\alpha : PC = \kappa(pc) \land (p_1 \rightarrow V_1 = e_1) \land \cdots \land (p_n \rightarrow V_n = e_n$$

- **invariant** ϕ_i for each block B referring only to target variables.
- **Verification Conditions**: For each pair of basic blocks i and j, verify

$$C_{ij} : \phi_i \land \alpha \land \rho_{ij} \land (\bigvee_{\pi \in \text{Paths}^S} \rho_{\pi}) \rightarrow \alpha' \land \phi'_j,$$

where Paths^S is the set of all simple source paths and ρ_{π} is the transition relation for the simple source path π.

Example: INTSQRT

<table>
<thead>
<tr>
<th>before</th>
<th>after</th>
</tr>
</thead>
<tbody>
<tr>
<td>B_0 : $N:=500; Y:=0; W:=1;$</td>
<td>$b_0 : t:=0; y:=0; w:=1;$</td>
</tr>
<tr>
<td>B_1 : if !(N \geq W) goto B3;</td>
<td>$b_1 : {\phi_1 : t = 2y}$</td>
</tr>
<tr>
<td>B_2 : $W:=W+2*Y+3; Y:=Y+1; \quad \text{goto B1}$;</td>
<td>if ($w < 500$) goto b1;</td>
</tr>
</tbody>
</table>
| B_3 : | $b_2 : \quad \text{Control abstraction} \ \kappa : b_0 \rightarrow B_0 \land b_1 \rightarrow B_2 \land b_2 \rightarrow B_3$

Data abstraction:

$(PC = \kappa(pc) \land (Y = y) \land (W = w) \land (pc \neq b_0 \rightarrow N = 500)$

Example: INTSQRT

<table>
<thead>
<tr>
<th>before</th>
<th>after</th>
</tr>
</thead>
<tbody>
<tr>
<td>B_0 : $N:=500; Y:=0; W:=1;$</td>
<td>$b_0 : t:=0; y:=0; w:=1;$</td>
</tr>
<tr>
<td>B_1 : if !(N \geq W) goto B3;</td>
<td>$b_1 : {\phi_1 : t = 2y}$</td>
</tr>
<tr>
<td>B_2 : $W:=W+2*Y+3; Y:=Y+1; \quad \text{goto B1}$;</td>
<td>if ($w < 500$) goto b1;</td>
</tr>
</tbody>
</table>
| B_3 : | $b_2 : \quad \text{Control abstraction} \ \kappa : b_0 \rightarrow B_0 \land b_1 \rightarrow B_2 \land b_2 \rightarrow B_3$

Data abstraction:

$(PC = \kappa(pc) \land (Y = y) \land (W = w) \land (pc \neq b_0 \rightarrow N = 500)$

$C_{b_01} : \phi_0 \land \alpha \land \rho_{b_01} \land (\bigvee_{\pi \in \text{Paths}^S} \rho_{\pi}) \rightarrow \alpha' \land \phi'_1$ expands to:

$$\begin{align*}
\text{true} & \land PC = \kappa(pc) \\
\land Y = y & \land W = w \\
\land pc \neq b_0 \rightarrow N = 500 & \land (pc = b_0) \\
\land \rho_{b_01} & \land \rho_{b_01} = b_1 \\
\land t' = 0 & \land y' = 0 \\
\land w' = 1 & \land N' = 500 \\
\land PC' = b_0 & \land PC' = B_2 \\
\land N' = 500 & \land Y' = 0 \\
\land W' = 1 & \land N' \geq W' \\
\implies PC' = \kappa(pc') \land Y' = y' \\
\land W' = w' \land pc' \neq b_0 \rightarrow N' = 500 \land (t' = 2 \cdot y')
\end{align*}$$
Reordering Transformations

Important class of *structure modifying* transformations.

Transformation is a simple *permutation* of the original execution order.

Example: Loop Reversal

\[
\begin{align*}
 B(1) & \quad B(n) \\
 B(2) & \quad B(n-1) \\
 \vdots & \quad \vdots \\
 B(n) & \quad B(1)
\end{align*}
\]

Loop Transformations

\[
\text{for } \vec{i} \in \mathcal{I} \text{ by } \prec \mathcal{I} \text{ do } B(\vec{i}) \implies \text{for } \vec{j} \in \mathcal{J} \text{ by } \prec \mathcal{J} \text{ do } B(F(\vec{j}))
\]

Example: Reversal

- \(\mathcal{I} = \mathcal{J} = \{1..n\} \)
- \(F(j) = n - j + 1 \)

Example: Loop Interchange

- \(\mathcal{I} = \{1..m\} \times \{1..n\} \)
- \(\mathcal{J} = \{1..n\} \times \{1..m\} \)
- \(F(j_1, j_2) = (j_2, j_1) \)

Loop Transformations: Loop Fusion

\[
\text{for } \vec{i} \in \mathcal{I} \text{ by } \prec \mathcal{I} \text{ do } B_1(i) \implies \text{for } \vec{i} \in \mathcal{I} \text{ by } \prec \mathcal{I} \text{ do } B_1(i)
\]

\[
\text{for } \vec{i} \in \mathcal{I} \text{ by } \prec \mathcal{I} \text{ do } B_2(i) \implies \begin{align*}
 B_1(1) & \quad B_1(1) \\
 \vdots & \quad \vdots \\
 B_1(n) & \quad B_1(n) \\
 B_2(1) & \quad B_2(1) \\
 \vdots & \quad \vdots \\
 B_2(n) & \quad B_2(n)
\end{align*}
\]
Loop Transformations
\[\text{for } \vec{i} \in \mathcal{I} \text{ by } \prec \text{ do } B(\vec{i}) \implies \text{for } \vec{j} \in \mathcal{J} \text{ by } \prec \text{ do } B(F(\vec{j})) \]

Example: Loop Fusion
- \(\mathcal{I} = \{1..2\} \times \{1..m\} \times \{1\} \)
- \(\mathcal{J} = \{1\} \times \{1..m\} \times \{1..2\} \)
- \(F(1, j, b) = (b, j, 1) \)

Permute Proof Rule
\[\vec{i}_1 \prec \vec{i}_2 \land F^{-1}(\vec{i}_2) \prec F^{-1}(\vec{i}_1) \implies B(\vec{i}_1); B(\vec{i}_2) \sim B(\vec{i}_2); B(\vec{i}_1) \]

for \(\vec{i} \in \mathcal{I} \text{ by } \prec \text{ do } B(\vec{i}) \sim \text{for } \vec{j} \in \mathcal{J} \text{ by } \prec \text{ do } B(F(\vec{j})) \]

CVC Input
\[
\begin{align*}
\text{for } i = 1 \text{ to } M \\
\text{for } j = 1 \text{ to } N \\
\text{for } i = 1 \text{ to } M \\
\end{align*}
\]

Verification Condition
\[
\begin{align*}
(i_1, j_1) < (i_2, j_2) & \land (j_2, i_2) < (j_1, i_1) \\
& \sim A[i_2, j_2] := A[i_2 - 1, j_2 - 1]; A[i_1, j_1] := A[i_1 - 1, j_1 - 1]
\end{align*}
\]

Example
\[
\begin{align*}
\mathcal{I} &= \{1..2\} \times \{1..m\} \times \{1\} \\
\mathcal{J} &= \{1\} \times \{1..m\} \times \{1..2\} \\
F(1, j, b) &= (b, j, 1)
\end{align*}
\]
Speculative Optimizations

- Optimizations which only apply under certain conditions
- Require a \textit{run-time} test to check the condition

Example

\[
\begin{align*}
\text{for } i = 1 \text{ to } M \\
\text{for } j = 1 \text{ to } N \\
\end{align*}
\]

\[
\begin{align*}
\Rightarrow \\
\text{for } j = 1 \text{ to } N \\
\text{for } i = 1 \text{ to } M \\
\end{align*}
\]

Speculative Optimizations

Where do run-time tests come from?
- Hard-coded into compiler
- Dangerous potential source of compiler bugs

Can they be automatically generated?
- Use translation validation infrastructure
- Find necessary conditions under which validation fails
- Use these conditions to derive run-time test
- Tests are correct by construction

Deriving Run-Time Tests with CVC

Input: Verification Condition ϕ
Output: Run-Time Test ψ

1. Let $\psi = \text{true}$
2. Check $\psi \rightarrow \phi$
3. If valid, return ψ
4. If invalid, get a counterexample θ
5. Select a formula from θ, negate it, and add it (via conjunction) to ψ
6. Goto 2
Deriving Run-Time Tests with CVC

Formula Selection Heuristics

- Must include a testable variable
- Prefer positive assertions to negated assertions
- Prefer smaller (simpler) formula to larger formula

Loop variables can be eliminated using known inequalities

Example

\[
\begin{align*}
\text{for } i = 1 \text{ to } M \\
\text{for } j = 1 \text{ to } N \\
\text{for } i = 1 \text{ to } M \\
A[i, j] &\Leftarrow A[i - 1, j - k]
\end{align*}
\]

Verification Condition

\[
(i_1, j_1) < (i_2, j_2) \land (j_2 < j_1 \lor (j_2 = j_1 \land i_2 < i_1)) \Rightarrow
\]

\[
\begin{align*}
A[i_1, j_1] &\Leftarrow A[i_1 - 1, j_1 - k] ; A[i_2, j_2] \Leftarrow A[i_2 - 1, j_2 - k] \\
\sim
A[i_2, j_2] &\Leftarrow A[i_2 - 1, j_2 - k] ; A[i_1, j_1] \Leftarrow A[i_1 - 1, j_1 - k]
\end{align*}
\]

CVC Input

```plaintext
i1, j1, i2, j2, k, arb_addr : INT;
a : ARRAY INT OF ARRAY INT OF INT;
QUERY ((i1 < i2 OR (i1 = i2 AND j1 < j2)) AND
(j2 < j1 OR (j2 = j1 AND i2 < i1))) =>
(LET a1 : ARRAY INT OF ARRAY INT OF INT =
a WITH [i1][j1] := a[i1-1][j1-k] IN
a1 WITH [i2][j2] := a1[i2-1][j2-k])arb_addr =
(LET a1 : ARRAY INT OF ARRAY INT OF INT =
a WITH [i2][j2] := a[i2-1][j2-k] IN
a1 WITH [i1][j1] := a1[i1-1][j1-k])arb_addr)
```

CVC Output

Invalid.

Current stack level is 0 (scope 7).

% Active assumptions:

ASSERT (arb_addr = i2);

ASSERT ((1 + (-1 * i2) + i1) = 0);

ASSERT ((0 + k + (-1 * j2) + j1) = 0);

ASSERT NOT (j2 = j1);

Only the third assertion meets our criteria.

Negating gives the condition: \(k \neq j_2 - j_1 \).

Using the known inequality \(j_2 - j_1 < 0 \) results in the run-time test: \(k \geq 0 \).
More Interesting Example

```plaintext
procedure copy(p, r, N)
begin
  for i = 0 to N - 1
    *(p + i) := *(r + i)
end

... copy(p, r, N)
copy(q, r, N)
```

After Inlining

```plaintext
for i = 0 to N - 1
  *(p + i) := *(r + i)
for i = 0 to N - 1
  *(q + i) := *(r + i)
```

Perfect Candidate for Fusion

```plaintext
for i = 0 to N - 1
  *(p + i) := *(r + i)
  *(q + i) := *(r + i)
```

CVC Input

```plaintext
p, q, r : INT;
i1, i2, arb_addr : INT;
M : ARRAY INT OF INT;
QUERY(i1 < i2) => (LET M1 : ARRAY INT OF INT =
  M WITH [q + i1] := M[r + i1] IN
  M1 WITH [p + i2] := M1[r + i2])[arb_addr] =
  (LET M1 : ARRAY INT OF INT =
    M WITH [q + i1] := M[r + i1] IN
    M1 WITH [p + i2] := M1[r + i2])[arb_addr]);
```
CVC Output

We initially get a counter-example which includes the assertion:

\[q - r = i_2 - i_1 \]

Asserting its negation, we get another counter-example with the assertion:

\[r - p = i_2 - i_1 \]

Repeating this one more time yields:

\[q - p = i_2 - i_1. \]

Under the negation of these three assertions, the verification condition is valid.

Using the inequality \(0 < i_2 - i_1 < N \), we get the run-time test:

\[
\begin{align*}
(q - r &\leq 0 \text{ OR } q - r \geq N) \text{ AND } \\
(q - p &\leq 0 \text{ OR } q - p \geq N) \text{ AND } \\
(r - p &\leq 0 \text{ OR } r - p \geq N)
\end{align*}
\]

Deriving Run-Time Tests with CVC

Fusion Example

\[
\begin{align*}
\text{if } ((q - r &\leq 0 \text{ OR } q - r \geq N) \text{ AND } \\
(q - p &\leq 0 \text{ OR } q - p \geq N) \text{ AND } \\
(r - p &\leq 0 \text{ OR } r - p \geq N))
\end{align*}
\]

\[
\begin{align*}
\text{for } i = 0 \text{ to } N - 1 \\
* (p + i) &:= *(r + i) \\
* (q + i) &:= *(r + i)
\end{align*}
\]

\[
\begin{align*}
\text{else}
\end{align*}
\]

\[
\begin{align*}
\text{for } i = 0 \text{ to } N - 1 \\
* (p + i) &:= *(r + i) \\
* (q + i) &:= *(r + i)
\end{align*}
\]