Review

• Theories
• Satisfiability Modulo Theories
• Congruence Closure
• Shostak’s Method
Outline

- Satisfiability Modulo Theories
- Theory Solvers
- Combining Decision Procedures
- Abstract DPLL Modulo Theories
- Example Application: Translation Validation

Sources:

Section 2.7 of Enderton.

Motivation

Automatic analysis of computer hardware and software requires engines capable of reasoning efficiently about large and complex systems.

Boolean engines such as *Binary Decision Diagrams* and *SAT solvers* are typical engines of choice for today’s industrial verification applications.

However, systems are usually designed and modeled at a higher level than the Boolean level and the translation to Boolean logic can be expensive.

A primary goal of research in *Satisfiability Modulo Theories* (SMT) is to create verification engines that can reason natively at a higher level of abstraction, while still retaining the speed and automation of today’s Boolean engines.
Combining Decision Procedures

Often, verification conditions are expressed in a language which mixes several theories.

A natural question is whether one can use decision procedures for individual theories to construct a decision procedure for the union theory.

More precisely, suppose that $\Sigma_1, \ldots, \Sigma_n$ are n signatures, and for $i = 1, \ldots, n$, let T_i be a Σ_i-theory.

Then, let Sat_i be a decision procedure for deciding the T_i-satisfiability of Σ_i-formulas.

How can we use these to construct a decision procedure for the T-satisfiability of Σ-formulas, where $T = Cn \cup T_i$ and $\Sigma = \bigcup \Sigma_i$.
The Nelson-Oppen Method

A very general method for combining decision procedures is the *Nelson-Oppen* method.

This method is applicable when

1. The signatures Σ_i are disjoint.

2. The theories T_i are stably-infinite.

 A Σ-theory T is *stably-infinite* if every T-satisfiable quantifier-free Σ-formula is satisfiable in an infinite model.

3. The formulas to be tested for satisfiability are quantifier-free.

In practice, only the third requirement is a significant restriction.

We may also restrict our attention to conjunctions of literals.

This is because any quantifier-free formula can be put into disjunctive normal form. It then suffices to check the satisfiability of each conjunction.
The Nelson-Oppen Method

Before explaining the procedure in detail, we need the following definitions.

1. For $i = 1, \ldots, n$, a member of Σ_i is an i-symbol.

2. A Σ-term t is an i-term if it is a variable, a constant i-symbol, or the application of a functional i-symbol.

3. An i-predicate is an application of a predicate i-symbol.

4. An atomic i-formula is an i-predicate or an equation whose left hand side is an i-term (for equations whose left-hand-sides are variables, we arbitrarily choose a theory T_i to associate with each variable).

5. An i-literal is an atomic i-formula or the negation of an atomic i-formula.

6. An occurrence of a term t in either a term or a formula is i-alien if t is a j-term with $i \neq j$ and all of its super-terms (if any) are i-terms.

7. An i-term or i-literal is pure if it contains only i-symbols.
The Nelson-Oppen Method

Now we can explain step one of the Nelson-Oppen method:

1. Conversion to Separate Form

Given a conjunction of literals, ϕ, we desire to convert it into a separate form: a T-equisatisfiable conjunction of literals $\phi_1 \land \phi_2 \land \ldots \land \phi_n$, where each ϕ_i is a Σ_i-formula.

The following algorithm accomplishes this.

1. Let ψ be some i-literal in ϕ.
2. If ψ is a pure i-literal, for some i, remove ψ from ϕ and add ψ to ϕ_i; if ϕ is empty then stop; otherwise goto step 1.
3. Let t be an i-alien term in ψ. Replace t in ϕ with a new variable z associated with theory T_i, and add $z = t$ to ϕ. Goto step 1.
The Nelson-Oppen Method

It is easy to see that \(\phi \) is \(T \)-satisfiable iff \(\phi_1 \land \ldots \land \phi_n \) is \(T \)-satisfiable.

Furthermore, because each \(\phi_i \) is a \(\Sigma_i \)-formula, we can run \(\text{Sat}_i \) on each \(\phi_i \).

Clearly, if \(\text{Sat}_i \) reports that any \(\phi_i \) is unsatisfiable, then \(\phi \) is unsatisfiable.

But the converse is not true in general.

We need a way for the decision procedures to communicate with each other about shared variables.

First a definition: If \(S \) is a set of terms and \(\sim \) is an equivalence relation on \(S \), then the arrangement of \(S \) induced by \(\sim \) is

\[\text{Ar}_\sim = \{ x = y \mid x \sim y \} \cup \{ x \neq y \mid x \not\sim y \}. \]
The Nelson-Oppen Method

Suppose that T_1 and T_2 are theories with disjoint signatures Σ_1 and Σ_2 respectively. Let $T = Cn \bigcup T_i$ and $\Sigma = \bigcup \Sigma_i$. Given a Σ-formula ϕ and decision procedures Sat_1 and Sat_2 for T_1 and T_2 respectively, we wish to determine if ϕ is T-satisfiable. The non-deterministic Nelson-Oppen algorithm for this is as follows:

1. Convert ϕ to its separate form $\phi_1 \land \phi_2$.
2. Let S be the set of variables shared between ϕ_1 and ϕ_2. Guess an equivalence relation \sim on S.
3. Run Sat_1 on $\phi_1 \cup Ar_{\sim}$.
4. Run Sat_2 on $\phi_2 \cup Ar_{\sim}$.

If there exists an equivalence relation \sim such that both Sat_1 and Sat_2 succeed, then we claim that ϕ is T-satisfiable.

If no such equivalence relation exists, then we claim that ϕ is t-unsatisfiable.

The generalization to more than two theories is straightforward.
Example

Consider the combination of the theory T_Z with the theory T_E of equality.

Let $\phi = 1 \leq x \land x \leq 2 \land f(x) \neq f(1) \land f(x) \neq f(2)$.

Is this satisfiable?
Example

Consider the combination of the theory T_Z with the theory T_E of equality.

Let $\phi = 1 \leq x \land x \leq 2 \land f(x) \neq f(1) \land f(x) \neq f(2)$.

Is this satisfiable? No.
Example

Consider the combination of the theory T_Z with the theory T_E of equality.

Let $\phi = 1 \leq x \land x \leq 2 \land f(x) \neq f(1) \land f(x) \neq f(2)$.

Is this satisfiable? **No.**

To determine this using the above algorithm, we first convert ϕ to a separate form:

$\phi_Z = 1 \leq x \land x \leq 2 \land y = 1 \land z = 2$
$\phi_E = f(x) \neq f(y) \land f(x) \neq f(z)$

Now, the shared variables are $\{x, y, z\}$. There are 5 possible arrangements based on equivalence classes of x, y, and z:

1. $\{x = y, x = z, y = z\}$
2. $\{x = y, x \neq z, y \neq z\}$
3. $\{x \neq y, x = z, y \neq z\}$
4. $\{x \neq y, x \neq z, y = z\}$
5. $\{x \neq y, x \neq z, y \neq z\}$
Example

Consider the combination of the theory T_Z with the theory T_E of equality.

Let $\phi = 1 \leq x \land x \leq 2 \land f(x) \neq f(1) \land f(x) \neq f(2)$.

Is this satisfiable? No.

To determine this using the above algorithm, we first convert ϕ to a separate form:

$\phi_Z = 1 \leq x \land x \leq 2 \land y = 1 \land z = 2$
$\phi_E = f(x) \neq f(y) \land f(x) \neq f(z)$

Now, the shared variables are $\{x, y, z\}$. There are 5 possible arrangements based on equivalence classes of x, y, and z:

1. $\{x = y, x = z, y = z\}$: inconsistent with ϕ_E.
2. $\{x = y, x \neq z, y \neq z\}$
3. $\{x \neq y, x = z, y \neq z\}$
4. $\{x \neq y, x \neq z, y = z\}$
5. $\{x \neq y, x \neq z, y \neq z\}$
Example

Consider the combination of the theory T_Z with the theory T_E of equality.

Let $\phi = 1 \leq x \land x \leq 2 \land f(x) \neq f(1) \land f(x) \neq f(2)$.

Is this satisfiable? **No.**

To determine this using the above algorithm, we first convert ϕ to a separate form:

- $\phi_Z = 1 \leq x \land x \leq 2 \land y = 1 \land z = 2$
- $\phi_E = f(x) \neq f(y) \land f(x) \neq f(z)$

Now, the shared variables are $\{x, y, z\}$. There are 5 possible arrangements based on equivalence classes of x, y, and z:

1. $\{x = y, x = z, y = z\}$: inconsistent with ϕ_E.
2. $\{x = y, x \neq z, y \neq z\}$: inconsistent with ϕ_E.
3. $\{x \neq y, x = z, y \neq z\}$
4. $\{x \neq y, x \neq z, y = z\}$
5. $\{x \neq y, x \neq z, y \neq z\}$
Example

Consider the combination of the theory T_Z with the theory T_E of equality.

Let $\phi = 1 \leq x \land x \leq 2 \land f(x) \neq f(1) \land f(x) \neq f(2)$.

Is this satisfiable? No.

To determine this using the above algorithm, we first convert ϕ to a separate form:

$$
\phi_Z = 1 \leq x \land x \leq 2 \land y = 1 \land z = 2 \\
\phi_E = f(x) \neq f(y) \land f(x) \neq f(z)
$$

Now, the shared variables are $\{x, y, z\}$. There are 5 possible arrangements based on equivalence classes of x, y, and z:

1. $\{x = y, x = z, y = z\}$: inconsistent with ϕ_E.
2. $\{x = y, x \neq z, y \neq z\}$: inconsistent with ϕ_E.
3. $\{x \neq y, x = z, y \neq z\}$: inconsistent with ϕ_E.
4. $\{x \neq y, x \neq z, y = z\}$
5. $\{x \neq y, x \neq z, y \neq z\}$
Example

Consider the combination of the theory T_Z with the theory T_E of equality.

Let $\phi = 1 \leq x \land x \leq 2 \land f(x) \neq f(1) \land f(x) \neq f(2)$.

Is this satisfiable? **No.**

To determine this using the above algorithm, we first convert ϕ to a separate form:

$\phi_Z = 1 \leq x \land x \leq 2 \land y = 1 \land z = 2$

$\phi_E = f(x) \neq f(y) \land f(x) \neq f(z)$

Now, the shared variables are $\{x, y, z\}$. There are 5 possible arrangements based on equivalence classes of x, y, and z:

1. $\{x = y, x = z, y = z\}$: inconsistent with ϕ_E.
2. $\{x = y, x \neq z, y \neq z\}$: inconsistent with ϕ_E.
3. $\{x \neq y, x = z, y \neq z\}$: inconsistent with ϕ_E.
4. $\{x \neq y, x \neq z, y = z\}$: inconsistent with ϕ_Z.
5. $\{x \neq y, x \neq z, y \neq z\}$
Example

Consider the combination of the theory T_Z with the theory T_E of equality.

Let $\phi = 1 \leq x \land x \leq 2 \land f(x) \neq f(1) \land f(x) \neq f(2)$.

Is this satisfiable? No.

To determine this using the above algorithm, we first convert ϕ to a separate form:

$\phi_Z = 1 \leq x \land x \leq 2 \land y = 1 \land z = 2$

$\phi_E = f(x) \neq f(y) \land f(x) \neq f(z)$

Now, the shared variables are $\{x, y, z\}$. There are 5 possible arrangements based on equivalence classes of x, y, and z:

1. $\{x = y, x = z, y = z\}$: inconsistent with ϕ_E.
2. $\{x = y, x \neq z, y \neq z\}$: inconsistent with ϕ_E.
3. $\{x \neq y, x = z, y \neq z\}$: inconsistent with ϕ_E.
4. $\{x \neq y, x \neq z, y = z\}$: inconsistent with ϕ_Z.
5. $\{x \neq y, x \neq z, y \neq z\}$: inconsistent with ϕ_Z.
Correctness of Nelson-Oppen

We define an *interpretation* of a signature Σ to be a model of Σ together with a variable assignment. If A is an interpretation, we write $A \models \phi$ to mean that ϕ is satisfied by the model and variable assignment contained in A.

Two interpretations A and B are *isomorphic* if there exists an isomorphism h of the model of A into the model of B and $h(x^A) = x^B$ for each variable x (where x^A signifies the value assigned to x by the variable assignment of A).

We furthermore define $A^{\Sigma, V}$ to be the restriction of A to the symbols in Σ and the variables in V.

Theorem

Let Σ_1 and Σ_2 be signatures, and for $i = 1, 2$, let ϕ_i be a set of Σ_i-formulas, and V_i the set of variables appearing in ϕ_i. Then $\phi_1 \cup \phi_2$ is satisfiable iff there exists a Σ_1-interpretation A satisfying ϕ_1 and a Σ_2-interpretation B satisfying ϕ_2 such that:

$$A^{\Sigma_1 \cap \Sigma_2, V_1 \cap V_2} \text{ is isomorphic to } B^{\Sigma_1 \cap \Sigma_2, V_1 \cap V_2}.$$
Correctness of Nelson-Oppen

Proof

Let $\Sigma = \Sigma_1 \cap \Sigma_2$ and $V = V_1 \cap V_2$.

Suppose $\phi_1 \cup \phi_2$ is satisfiable. Let M be an interpretation satisfying $\phi_1 \cup \phi_2$. If we let $A = M^{\Sigma_1,V_1}$ and $B = M^{\Sigma_2,V_2}$, then clearly

- $A \models \phi_1$
- $B \models \phi_2$
- $A^{\Sigma,V}$ is isomorphic to $B^{\Sigma,V}$

On the other hand, suppose that we have A and B satisfying the three conditions listed above. Let h be an isomorphism from $A^{\Sigma,V}$ to $B^{\Sigma,V}$.

We define an interpretation M as follows:

- $\text{dom}(M) = \text{dom}(A)$
- For each variable or constant u, $u^M = \begin{cases} u^A & \text{if } u \in (\Sigma_1^C \cup V_1) \\ h^{-1}(u^B) & \text{otherwise} \end{cases}$
Correctness of Nelson-Oppen

- For function symbols of arity n,
 \[
 f^M(a_1, \ldots, a_n) = \begin{cases}
 f^A(a_1, \ldots, a_n) & \text{if } f \in \Sigma^F_1 \\
 h^{-1}(f^B(h(a_1), \ldots, h(a_n))) & \text{otherwise}
 \end{cases}
 \]

- For predicate symbols of arity n,
 \[
 (a_1, \ldots, a_n) \in P^M \iff (a_1, \ldots, a_n) \in P^A \quad \text{if } P \in \Sigma^P_1 \\
 (a_1, \ldots, a_n) \in P^M \iff (h(a_1), \ldots, h(a_n)) \in P^B \quad \text{otherwise}
 \]

By construction, M^{Σ_1, V_1} is isomorphic to A. In addition, it is easy to verify that h is an isomorphism of M^{Σ_2, V_2} to B.

It follows by the homomorphism theorem that M satisfies $\phi_1 \cup \phi_2$.

\[\Box\]
Correctness of Nelson-Oppen

Theorem

Let Σ_1 and Σ_2 be signatures, with $\Sigma_1 \cap \Sigma_2 = \emptyset$, and for $i = 1, 2$, let ϕ_i be a set of Σ_i-formulas, and V_i the set of variables appearing in ϕ_i. As before, let $V = V_1 \cap V_2$. Then $\phi_1 \cup \phi_2$ is satisfiable iff there exists an interpretation A satisfying ϕ_1 and an interpretation B satisfying ϕ_2 such that:

1. $|A| = |B|$, and
2. $x^A = y^A$ iff $x^B = y^B$ for every pair of variables $x, y \in V$.

Proof

Clearly, if $\phi_1 \cup \phi_2$ is satisfiable in some interpretation M, then the only if direction holds by letting $A = M$ and $B = M$.

Consider the converse. Let $h : V^A \rightarrow V^B$ be defined as $h(x^A) = x^B$. This definition is well-formed by property 2 above.

In fact, h is bijective. To show that h is injective, let $h(a_1) = h(a_2)$. Then there exist variables $x, y \in V$ such that $a_1 = x^A$, $a_2 = y^A$, and $x^B = y^B$. By property 2, $x^A = y^A$, and therefore $a_1 = a_2$.
Correctness of Nelson-Oppen

To show that h is surjective, let $b \in V^B$. Then there exists a variable $x \in V^B$ such that $x^B = b$. But then $h(x^A) = b$.

Since h is bijective, it follows that $|V^A| = |V^B|$, and since $|A| = |B|$, we also have that $|A - V^A| = |B - V^B|$. We can therefore extend h to a bijective function h' from A to B.

By construction, h' is an isomorphism of A^V to B^V. Thus, by the previous theorem, we can obtain an interpretation satisfying $\phi_1 \cup \phi_2$.

\qed
Correctness of Nelson-Oppen

We can finally prove the correctness of the nondeterministic Nelson-Oppen method.

Theorem

Let T_i be a stably-infinite Σ_i-theory, for $i = 1, 2$, and suppose that $\Sigma_1 \cap \Sigma_2 = \emptyset$. Also, let ϕ_i be a set of Σ_i literals, $i = 1, 2$, and let S be the set of variables appearing in both ϕ_1 and ϕ_2. Then $\phi_1 \cup \phi_2$ is $T_1 \cup T_2$-satisfiable iff there exists an equivalence relation \sim on S such that $\phi_i \cup Ar_{\sim}$ is T_i-satisfiable, $i = 1, 2$.

Proof

Suppose M is an interpretation satisfying $\phi_1 \cup \phi_2$. We define an equivalence relation $x \sim y$ iff $x, y \in S$ and $x^M = y^M$. By construction, M is a T_i-interpretation satisfying $\phi_i \cup Ar_{\sim}$, $i = 1, 2$.
Correctness of Nelson-Oppen

Suppose on the other hand that there exists an equivalence relation \sim of S such that $\phi_i \cup Ar_\sim$ is T_i-satisfiable, $i = 1, 2$. Since T_1 is stably-infinite, there is an infinite interpretation A satisfying $\phi_1 \cup Ar_\sim$. Similarly, there is an infinite interpretation B satisfying $\phi_2 \cup Ar_\sim$.

But by LST, we can take the least upper bound of $|A|$ and $|B|$ and obtain interpretations of that cardinality.

Then we have $|A| = |B|$ and $x^A = y^A$ iff $x^B = y^B$ for every variable $x, y \in S$. We can thus apply the previous theorem and obtain the existence of a $(\Sigma_1 \cup \Sigma_2)$-interpretation satisfying $\phi_1 \cup \phi_2$.

□
Translation Validation

Ultimate Goal

• Guarantee correctness of *optimizing compilers*

Important in:

• *Safety critical applications*, where standards and regulations require that every compiler be *certified*

• *Compilation into silicon*, where a translation error is *critically* expensive
Translator vs. Translation Validation

Rather than verify the *translator* itself, verify the *results* of *each* run of the translator.

Advantages

- Much easier
- Less sensitive to changes in the translator

Drawback

- Additional overhead during compilation
Translator vs. Translation Validation

Rather than verify the *translator* itself, verify the *results* of each run of the translator.

Advantages

- Much easier
- Less sensitive to changes in the translator

Drawback

- Additional overhead during compilation
- But not enough to outweigh the benefits
Translation Validation

Two main types of optimizations

- *Structure preserving* optimizations
- *Structure modifying* optimizations

Structure preserving

- Use *Validate* proof rule
Validate Proof Rule

To verify that a target T correctly translates a source S, establish:

- **control abstraction** κ from T’s basic blocks to S’s basic blocks

- **data abstraction** α specifying source variables in terms of target expressions

\[\alpha : PC = \kappa(pc) \land (p_1 \rightarrow V_1 = e_1) \land \cdots \land (p_n \rightarrow V_n = e_n) \]

- **invariant** ϕ_i for each block B referring only to target variables.

- **Verification Conditions**: For each pair of basic blocks i and j, verify

\[C_{ij} : \phi_i \land \alpha \land \rho^T_{ij} \land (\bigvee_{\pi \in \text{Paths}^S} \rho_{\pi}) \rightarrow \alpha' \land \phi'_j, \]

where Paths^S is the set of all simple source paths and ρ_{π} is the transition relation for the simple source path π.
Example: INTSQRT

before after

B0 : N:=500; Y:=0; W:=1; b0 : t:=0; y:=0; w:=1;
B1 : if !(N ≥ W) goto B3; b1 : \{\phi_1 : t = 2y\}
B2 : W:=W+2*Y+3; Y:=Y+1; w:=t + w +3; y:= y+1; t:= t+2;
goto B1; goto B1;
B3 :

Control abstraction \(\kappa\):
\[b0 \leftrightarrow B0 \]
\[b1 \leftrightarrow B2 \]
\[b2 \leftrightarrow B3 \]

Data abstraction:
\[(PC = \kappa(pc) \land (Y = y) \land (W = w) \land (pc \neq b0 \rightarrow N = 500) \]
Example: INTSQRT

before

$B0 : \quad N := 500; \ Y := 0; \ W := 1;$

$B1 : \quad \text{if} \ \!(N \geq W) \ \text{goto} \ B3;$

$B2 : \quad W := W + 2*Y + 3; \ Y := Y + 1;$

\text{goto} \ B1;$

$B3 : \quad$

after

$\quad b0 : \quad t := 0; \ y := 0; \ w := 1;$

$\quad b1 : \quad \{\phi_1 : t = 2y\}$

$\quad w := t + w + 3; \ y := y + 1; \ t := t + 2;$

\text{if} \ (w < 500) \ \text{goto} \ b1;$

$\quad b2 : \quad$

$\quad C_{01} : \phi_0 \land \alpha \land \rho_{01}^T \land (\bigvee_{\pi \in \text{Paths}^S} \rho_{\pi}) \quad \rightarrow \quad \alpha' \land \phi_1'$ expands to:

\[
\begin{align*}
&\text{true} \land \left\{ \begin{array}{l}
PC = \kappa(pc) \\
\land \quad Y = y \\
\land \quad W = w \\
\land \quad pc \neq b0 \rightarrow N = 500
\end{array} \right\} \land \left\{ \begin{array}{l}
pc = b0 \\
\land \quad pc' = b1 \\
\land \quad t' = 0 \\
\land \quad y' = 0 \\
\land \quad w' = 1
\end{array} \right\} \land \left\{ \begin{array}{l}
PC = B0 \\
\land \quad PC'' = B2 \\
\land \quad N' = 500 \\
\land \quad Y' = 0 \\
\land \quad W' = 1 \\
\land \quad N' \geq W'
\end{array} \right\} \\
\rightarrow \left\{ \begin{array}{l}
PC'' = \kappa(pc') \land Y' = y' \\
\land \quad W' = w' \land pc' \neq b0 \rightarrow N' = 500
\end{array} \right\} \land (t' = 2 \cdot y')
\end{align*}
\]
CVC Input

PC', y', Y', w', W', N', pc, PC, y, Y, w, W, N, pc', t': INT;

ASSERT (PC = IF (pc = 0) THEN 0
 ELSIF (pc = 1) THEN 2
 ELSE 3 ENDIF) AND
 Y=y AND W=w AND ((pc /= 0) => (N = 500));

ASSERT pc=0 AND pc' = 1 AND t' = 0 AND y' = 0 AND w' = 1;

ASSERT PC=0 AND PC' = 2 AND N' = 500 AND Y' = 0 AND W' = 1 AND (N' >= W');

QUERY (PC' = IF (pc' = 0) THEN 0
 ELSIF (pc' = 1) THEN 2
 ELSE 3 ENDIF) AND
 Y'=y' AND W'=w' AND ((pc' /= 0) => (N' = 500)) AND t' = 2 * y';
Reordering Transformations

Important class of *structure modifying* transformations.

Transformation is a simple *permutation* of the original execution order.

Example: Loop Reversal

\[
\begin{align*}
B(1) & \quad B(n) \\
B(2) & \quad B(n - 1) \\
\vdots & \quad \vdots \\
B(n) & \quad B(1)
\end{align*}
\]
Loop Transformations

\[
\text{for } \vec{i} \in \mathcal{I} \text{ by } \prec_{\mathcal{I}} \text{ do } B(\vec{i}) \implies \text{ for } \vec{j} \in \mathcal{J} \text{ by } \prec_{\mathcal{J}} \text{ do } B(F(\vec{j}))
\]

Example: Reversal

- \(\mathcal{I} = \mathcal{J} = \{1..n\} \)
- \(F(j) = n - j + 1 \)

Example: Loop Interchange

- \(\mathcal{I} = \{1..m\} \times \{1..n\} \)
- \(\mathcal{J} = \{1..n\} \times \{1..m\} \)
- \(F(j_1, j_2) = (j_2, j_1) \)
Loop Transformations: Loop Fusion

\[
\text{for } \vec{i} \in \mathcal{I} \text{ by } \prec_{\mathcal{I}} \text{ do } \\
B_1(i) \\
\text{for } \vec{i} \in \mathcal{I} \text{ by } \prec_{\mathcal{I}} \text{ do } \\
B_2(i) \\
\implies \\
\text{for } \vec{i} \in \mathcal{I} \text{ by } \prec_{\mathcal{I}} \text{ do } \\
B_1(i) \\
B_2(i)
\]
Loop Transformations: Loop Fusion

\[
\begin{align*}
\text{for } \vec{i} \in \mathcal{I} \text{ by } \prec_{\mathcal{I}} \text{ do} & \quad \Rightarrow \quad \text{for } \vec{i} \in \mathcal{I} \text{ by } \prec_{\mathcal{I}} \text{ do} \\
B_1(i) & \\
B_2(i) & \\
\text{for } \vec{i} \in \mathcal{I} \text{ by } \prec_{\mathcal{I}} \text{ do} & \\
B_1(i) & \\
B_2(i) & \\
B_1(1) & \quad \Rightarrow \quad B_1(1) \\
\vdots & \\
B_1(n) & \quad \Rightarrow \quad B_2(1) \\
B_2(1) & \\
\vdots & \\
B_2(n) & \\
\end{align*}
\]
Loop Transformations

\[
\begin{align*}
\text{for } \vec{i} & \in \mathcal{I} \text{ by } \prec_{\mathcal{I}} \text{ do } B(\vec{i}) \quad \Rightarrow \quad \text{for } \vec{j} & \in \mathcal{J} \text{ by } \prec_{\mathcal{J}} \text{ do } B(F(\vec{j}))
\end{align*}
\]

Example: Loop Fusion

- \(\mathcal{I} = \{1..2\} \times \{1..m\} \times \{1\}\)
- \(\mathcal{J} = \{1\} \times \{1..m\} \times \{1..2\}\)
- \(F(1, j, b) = (b, j, 1)\)
Permute Proof Rule

\[
\vec{i}_1 \prec_I \vec{i}_2 \land F^{-1}(\vec{i}_2) \prec_J F^{-1}(\vec{i}_1) \\
\rightarrow \\
B(\vec{i}_1); B(\vec{i}_2) \sim B(\vec{i}_2); B(\vec{i}_1)
\]

for \(\vec{i} \in \mathcal{I}\) by \(\prec_I\) do \(B(\vec{i})\) \(\sim\) for \(\vec{j} \in \mathcal{J}\) by \(\prec_J\) do \(B(F(\vec{j}))\)
Permute Proof Rule

Example

\[
\begin{align*}
\text{for } i = 1 \text{ to } M \\
\text{for } j = 1 \text{ to } N \\
A[i, j] &:= A[i - 1, j - 1]
\end{align*}
\implies
\begin{align*}
\text{for } j = 1 \text{ to } N \\
\text{for } i = 1 \text{ to } M \\
A[i, j] &:= A[i - 1, j - 1]
\end{align*}
\]
Permute Proof Rule

Example

\[
\begin{align*}
\text{for } i &= 1 \text{ to } M \\
\text{for } j &= 1 \text{ to } N \\
A[i, j] &:= A[i - 1, j - 1]
\end{align*}
\]

\[
\begin{align*}
\text{for } j &= 1 \text{ to } N \\
\text{for } i &= 1 \text{ to } M \\
A[i, j] &:= A[i - 1, j - 1]
\end{align*}
\]

Verification Condition

\[
(i_1, j_1) < (i_2, j_2) \land (j_2, i_2) < (j_1, i_1)
\]

\[
\begin{align*}
\sim
A[i_2, j_2] &:= A[i_2 - 1, j_2 - 1] ; A[i_1, j_1] := A[i_1 - 1, j_1 - 1]
\end{align*}
\]
CVC Input

i1, j1, i2, j2, arb_addr : INT;

a : ARRAY INT OF ARRAY INT OF INT;

QUERY

((i1 < i2 OR (i1 = i2 AND j1 < j2)) AND
 (j2 < j1 OR (j2 = j1 AND i2 < i1))) =>

((LET a1 : ARRAY INT OF ARRAY INT OF INT =
 a WITH [i1][j1] := a[i1-1][j1-1] IN
 a1 WITH [i2][j2] := a1[i2-1][j2-1]) [arb_addr] =

(LET a1 : ARRAY INT OF ARRAY INT OF INT =
 a WITH [i2][j2] := a[i2-1][j2-1] IN
 a1 WITH [i1][j1] := a1[i1-1][j1-1]) [arb_addr]);
Speculative Optimizations

- Optimizations which only apply under certain conditions
- Require a *run-time* test to check the condition
Speculative Optimizations

• Optimizations which only apply under certain conditions

• Require a run-time test to check the condition

Example

\[
\begin{align*}
\text{for } i = 1 \text{ to } M \\
\text{for } j = 1 \text{ to } N \\
\end{align*}
\]

\[
\begin{align*}
\Rightarrow \\
\text{for } j = 1 \text{ to } N \\
\text{for } i = 1 \text{ to } M \\
\end{align*}
\]
Speculative Optimizations

- Optimizations which only apply under certain conditions
- Require a \textit{run-time} test to check the condition

Example

\[
\begin{align*}
\text{for } i = 1 & \text{ to } M \quad \text{if } k \geq 0 \\
\quad \text{for } j = 1 & \text{ to } N \\
A[i, j] := A[i - 1, j - k] & \quad \Rightarrow \\
\text{else} \\
\text{for } i = 1 & \text{ to } M \\
\quad \text{for } j = 1 & \text{ to } N \\
\end{align*}
\]
Speculative Optimizations

Where do run-time tests come from?

- Hard-coded into compiler
- Dangerous potential source of compiler bugs
Speculative Optimizations

Where do run-time tests come from?

- Hard-coded into compiler
- Dangerous potential source of compiler bugs

Can they be automatically generated?

- Use translation validation infrastructure
- Find necessary conditions under which validation fails
- Use these conditions to derive run-time test
- Tests are correct by construction
Deriving Run-Time Tests with CVC

Input: Verification Condition ϕ
Output: Run-Time Test ψ

1. Let $\psi = true$

2. Check $\psi \rightarrow \phi$

3. If valid, return ψ

4. If invalid, get a counterexample θ

5. Select a formula from θ, negate it, and add it (via conjunction) to ψ

6. Goto 2
Deriving Run-Time Tests with CVC

Formula Selection Heuristics

- Must include a *testable* variable
- Prefer positive assertions to negated assertions
- Prefer smaller (simpler) formula to larger formula

Loop variables can be eliminated using known inequalities
Deriving Run-Time Tests with CVC

Example

\[
\begin{align*}
\text{for } i &= 1 \text{ to } M \\
\text{for } j &= 1 \text{ to } N \\
A[i, j] &:= A[i - 1, j - k]
\end{align*}
\]

\[
\begin{align*}
\text{for } j &= 1 \text{ to } N \\
\text{for } i &= 1 \text{ to } M \\
A[i, j] &:= A[i - 1, j - k]
\end{align*}
\]

Verification Condition

\[
(i_1, j_1) < (i_2, j_2) \land (j_2, i_2) < (j_1, i_1)
\]

\[
\begin{align*}
A[i_1, j_1] &:= A[i_1 - 1, j_1 - k] ;
A[i_2, j_2] &:= A[i_2 - 1, j_2 - k]
\end{align*}
\]

\[
\begin{align*}
A[i_2, j_2] &:= A[i_2 - 1, j_2 - k] ;
A[i_1, j_1] &:= A[i_1 - 1, j_1 - k]
\end{align*}
\]
CVC Input

i1, j1, i2, j2, k, arb_addr : INT;

a : ARRAY INT OF ARRAY INT OF INT;

QUERY ((i1 < i2 OR (i1 = i2 AND j1 < j2)) AND

(j2 < j1 OR (j2 = j1 AND i2 < i1))) =>

((LET a1 : ARRAY INT OF ARRAY INT OF INT =

 a WITH [i1][j1] := a[i1-1][j1-k] IN

 a1 WITH [i2][j2] := a[i2-1][j2-k]) [arb_addr] =

(LET a1 : ARRAY INT OF ARRAY INT OF INT =

 a WITH [i2][j2] := a[i2-1][j2-k] IN

 a1 WITH [i1][j1] := a[i1-1][j1-k]) [arb_addr]);
CVC Output

Invalid.

Current stack level is 0 (scope 7).

% Active assumptions:

ASSERT (arb_addr = i2);

ASSERT ((1 + (-1 * i2) + i1) = 0);

ASSERT ((0 + k + (-1 * j2) + j1) = 0);

ASSERT NOT (j2 = j1);

Only the third assertion meets our criteria.

Negating gives the condition: $k \neq j2 - j1$.

Using the known inequality $j2 - j1 < 0$ results in the run-time test: $k \geq 0$.
More Interesting Example

procedure copy(p, r, N)
begin
 for i = 0 to N − 1
 *(p + i) := *(r + i)
end

...

copy(p, r, N)
copy(q, r, N)
Deriving Run-Time Tests with CVC

After Inlining

\[
\text{for } i = 0 \text{ to } N - 1 \\
*(p + i) := *(r + i)
\]

\[
\text{for } i = 0 \text{ to } N - 1 \\
*(q + i) := *(r + i)
\]

Perfect Candidate for Fusion

\[
\text{for } i = 0 \text{ to } N - 1 \\
*(p + i) := *(r + i) \\
*(q + i) := *(r + i)
\]
Deriving Run-Time Tests with CVC

Fusion Example

For $i = 0$ to $N - 1$

$\ast (p + i) := \ast (r + i)$

For $i = 0$ to $N - 1$

$\ast (q + i) := \ast (r + i)$

Verification Condition

$i_1 < i_2$ \Rightarrow

$\ast (p + i_2) := \ast (r + i_2); \ast (q + i_1) := \ast (r + i_1)$

\sim

$\ast (q + i_1) := \ast (r + i_1); \ast (p + i_2) := \ast (r + i_2)$
CVC Input

\[\begin{align*}
& \text{p, q, r : INT;} \\
& \text{i1, i2, arb_addr : INT;} \\
& \text{M : ARRAY INT OF INT;} \\
& \text{QUERY} \\
& \quad (i1 < i2) => \\
& \quad (\text{LET M1 : ARRAY INT OF INT} = \\
& \quad \quad \text{M WITH [q + i1] := M[r + i1]} \ \text{IN} \\
& \quad \quad \text{M1 WITH [p + i2] := M1[r + i2]})[\text{arb_addr}] = \\
& \quad (\text{LET M1 : ARRAY INT OF INT} = \\
& \quad \quad \text{M WITH [p + i2] := M[r + i2]} \ \text{IN} \\
& \quad \quad \text{M1 WITH [q + i1] := M1[r + i1]}))[\text{arb_addr}]\); \\
\end{align*} \]
CVC Output

We initially get a counter-example which includes the assertion:

\[q - r = i2 - i1 \]

Asserting its negation, we get another counter-example with the assertion:

\[r - p = i2 - i1 \]

Repeating this one more time yields:

\[q - p = i2 - i1. \]

Under the negation of these three assertions, the verification condition is valid.

Using the inequality \(0 < i2 - i1 < N \), we get the run-time test:

\[(q - r \leq 0 \; \text{OR} \; q - r \geq N) \; \text{AND} \]
\[(q - p \leq 0 \; \text{OR} \; q - p \geq N) \; \text{AND} \]
\[(r - p \leq 0 \; \text{OR} \; r - p \geq N) \]
Deriving Run-Time Tests with CVC

Fusion Example

\[
\text{for } i = 0 \text{ to } N - 1 \\
*(p + i) := *(r + i) \\
\]

\[
\text{for } i = 0 \text{ to } N - 1 \\
*(q + i) := *(r + i) \\
\]

\[
\text{if } ((q - r \leq 0 \text{ OR } q - r \geq N) \text{ AND } \nonumber \\
(q - p \leq 0 \text{ OR } q - p \geq N) \text{ AND } \nonumber \\
(r - p \leq 0 \text{ OR } r - p \geq N)) \\
\text{for } i = 0 \text{ to } N - 1 \\
*(p + i) := *(r + i) \\
*(q + i) := *(r + i) \Rightarrow \\
\text{else} \\
\text{for } i = 0 \text{ to } N - 1 \\
*(p + i) := *(r + i) \\
\text{for } i = 0 \text{ to } N - 1 \\
*(q + i) := *(r + i) \nonumber \
\]