Review

Last week

- Propositional Logic: Semantics
- Satisfiability and Tautologies
- Propositional Connectives and Boolean Functions
- Compactness

Outline

- Computability and Decidability
- Boolean Circuits
- Boolean Satisfiability (SAT)
- Binary Decision Diagrams (BDD's)

Sources

Enderton: 1.6, 1.7.

N. J. Cutland. *Computability*.

Computability

The important notion of *computability* relies on a formal model of computation. Many formal models have been proposed:

1. General recursive functions defined by means of an equation calculus (Gödel-Herbrand-Kleene)
2. \(\lambda \)-definable functions (Church)
3. \(\mu \)-recursive functions and partial recursive functions (Gödel-Kleene)
4. Functions computable by finite machines known as Turing machines (Turing)
5. Functions defined from canonical deduction systems (Post)
6. Functions given by certain algorithms over a finite alphabet (Markov)
7. Universal Register Machine-computable functions (Shepherdson-Sturgis)

Fundamental Result

All of these (and many other) models of computation are equivalent. That is, they give rise to the same class of functions.

Computability and Decidability

All of these models are equivalent to what can be achieved by a computer with any standard programming language, given arbitrary (but finite) time and memory.

Church's Thesis

A notion known as Church's thesis states that all models of computation are either equivalent to or less powerful than those just described.

We will accept Church's thesis and thus define a function to be *computable* if we can describe precisely (using any model of computation) how to compute it. Such a description will be called an *effective procedure*.

Decidability

Given a universal set \(U \), a set \(S \subseteq U \) is decidable if there exists a computable function \(f : U \to \{ \text{F}, \text{T} \} \) such that \(f(x) = \text{T} \) iff \(x \in S \).

Decidability of \(W \)

Earlier, we presented an algorithm which, given any expression \(\alpha \) determines whether the expression is well-formed. Thus, the set \(W \) of well-formed formulas is decidable.

Semi-Decidability

Suppose we wish to determine whether \(\Sigma \models \alpha \) where \(\Sigma \) is infinite. In general, this is not decidable.

But we can obtain a weaker result:

A set \(A \) is *semi-decidable* (or *effectively enumerable*) if there is an effective procedure which lists, in some order, every member of \(A \).

Note that if \(A \) is infinite, then the procedure will never finish, but every member of \(A \) must appear in the list after some finite amount of time.

Theorem

A set \(A \) of expressions is effectively enumerable iff there is an effective procedure which, given any expression \(\alpha \), produces the answer "yes" iff \(\alpha \in A \).

Proof

If \(A \) is effectively enumerable, then we simply enumerate its members and check each one to see if it is equivalent to \(\alpha \). If it is, we return "yes" and stop. Otherwise, we keep going. Thus, if \(\alpha \in A \), the procedure produces "yes". If \(\alpha \notin A \), the procedure runs forever.
Proof, continued

On the other hand, suppose that we have an effective procedure P which produces “yes” iff $\alpha \in A$. To produce an enumeration of A, we proceed as follows. First enumerate all expressions:

$$\epsilon_1, \epsilon_2, \epsilon_3, \ldots$$

Then proceed as follows.
- Break the procedure P into a finite number of “steps”.
- Run P on ϵ_1 for 1 step.
- Run P on ϵ_1 for 2 steps, and then run P on ϵ_2 for 2 steps.
- ...
- Run P on each of $\epsilon_1, \ldots, \epsilon_n$ for n steps each
- ...

If at any time, the procedure P produces “yes”, then we list the expression which produced “yes” and continue.

This procedure will eventually enumerate all members of A. \hfill \Box

Semi-Decidability

Theorem

If Σ is an effectively enumerable set of wffs, then the set of tautological consequences of Σ is effectively enumerable.

Proof

Consider an enumeration of the elements of Σ:

$$\sigma_1, \sigma_2, \sigma_3, \ldots$$

By the compactness theorem, $\Sigma \models \alpha$ iff $\{\sigma_1, \ldots, \sigma_n\} \models \alpha$ for some n.

Hence, it is sufficient to successively test:

- $\emptyset \models \alpha$
- $\{\sigma_1\} \models \alpha$
- $\{\sigma_1, \sigma_2\} \models \alpha$
- ...

If any of these conditions is met (each of which is decidable), the answer is “yes”.

Proof (continued)

This demonstrates that there is an effective procedure that, given any wff α, will output “yes” iff α is a tautological consequence of Σ.

Thus, the set of tautological consequences of Σ is effectively enumerable. \hfill \Box
Boolean Satisfiability (SAT)

As we mentioned last time, Boolean satisfiability or SAT is widely useful for a variety of problems. SAT was the first problem ever shown to be \mathcal{NP}-complete:

This means that:
- Unless $P = \mathcal{NP}$, we will never find a polynomial algorithm to solve SAT.
- If we can nonetheless improve algorithms for SAT, there are many other problems that could benefit.

Converting to CNF

Examples
- Literals: $P_i, \neg P_i$
- Clauses: $(P_1 \lor \neg P_3 \lor P_5), (P_2 \lor \neg P_2)$
- CNF: $(P_1 \lor \neg P_3) \land (\neg P_2 \lor P_3 \lor P_5)$
- In the above formula, P_1 occurs positively and P_2 occurs negatively

To provide intuition for how to convert to CNF, we first explore the connection between propositional formulas and Boolean circuits.

Boolean Gates

Consider an electrical device having n inputs and one output. Assume that to each input we apply a signal that is either T or F, and that this uniquely determines whether the output is T or F.

The behavior of such a device is described by a Boolean function:

$$F(X_1, \ldots, X_n) = \text{the output signal given the input signals } X_1, \ldots, X_n.$$

We call such a device a Boolean gate.

The most common Boolean gates are AND, OR, and NOT gates.
Boolean Circuits

The inputs and outputs of Boolean gates can be connected together to form a **combinational Boolean circuit**.

A combinational Boolean circuit corresponds to a **directed acyclic graph** (DAG) whose leaves are *inputs* and each of whose nodes is labeled with the name of a Boolean gate. One or more of the nodes may be identified as outputs.

A common question with Boolean circuits is whether it is possible to set an output to true (e.g. when the output represents an *error* signal).

Sharing Sub-Expressions

\[(D \land (A \land B)) \lor ((A \land B) \land \neg C)\]

This formula highlights an inefficiency in the logic representation as compared with the circuit representation: the formula \(A \land B\) appears twice. For larger circuits, this kind of redundancy can result in an exponential blow-up in the size of the corresponding formula.

We can overcome this inefficiency by replacing the redundant sub-expression with a new place-holder variable. We then conjoin a new formula which says that the new variable is equivalent to the replaced expression:

\[\left((D \land E) \lor (E \land \neg C) \right) \land (E \leftrightarrow (A \land B))\]

Note that the new formula is *not* tautologically equivalent to the original formula (why?).

But it *is* equisatisfiable (i.e. the original formula is satisfiable iff the new formula is satisfiable). Since we are only concerned with the *satisfiability* of the formula, this is sufficient.

Converting to CNF

This same idea is behind a simple algorithm for converting any propositional formula (or an associated Boolean circuit) into an equisatisfiable formula in conjunctive normal form (CNF) in linear time and space. We will view the formula or circuit as a DAG.

1. Label each non-leaf node of the DAG with a new propositional variable.
2. Construct a conjunction of disjunctive clauses which relate the inputs of that node to its output (the new propositional variable)
3. The conjunction of all of these clauses together with a single clause consisting of the variable for the root node is satisfiable iff the original formula is satisfiable.
Converting to CNF: Example

\[(A \land B) \leftrightarrow E\]
\[(A \land B) \rightarrow E) \land (E \rightarrow (A \land B))\]
\[\neg(A \land B) \lor E) \land (\neg E \lor (A \land B))\]
\[\neg A \lor \neg B \lor E)\]
\[\neg A \lor \neg B \lor E) \land (\neg E \lor A) \land (\neg E \lor B)\]
\[\neg E \lor \neg C \land (C \land F)\land\]
\[\neg D \lor \neg E \lor G) \land (\neg G \lor D) \land (\neg G \lor E)\]
\[\neg G \lor H \lor I) \land (I \lor \neg G) \land (I \lor \neg H)\land\]
\[I\]

CNF: Alternative Notations

DIMACS standard

Each variable is represented by a positive integer. A negative integer refers to the negation of the variable. Clauses are given as sequences of integers separated by spaces. A 0 terminates the clause.

\[
(A' + B' + E)(E' + A)(E' + B) \quad -1 \quad 2 \quad 5 \quad 0 \quad -5 \quad 1 \quad 0 \quad -5 \quad 2 \quad 0
\]
\[
(C' + F')(C + F) \quad -3 \quad 6 \quad 0 \quad 3 \quad 6 \quad 0
\]
\[
(D' + E' + G)(G' + D)(G' + E) \quad -4 \quad 5 \quad 7 \quad 0 \quad -7 \quad 4 \quad 0 \quad -7 \quad 5 \quad 0
\]
\[
(E' + F' + H)(H' + E)(H' + F') \quad -5 \quad 6 \quad 8 \quad 0 \quad -8 \quad 5 \quad 0 \quad -8 \quad 6 \quad 0
\]
\[
(G + H + I')(I + G')(I + H') \quad 7 \quad 8 \quad 9 \quad 0 \quad 9 \quad 7 \quad 0 \quad 9 \quad 8 \quad 0
\]
\[I\]

Davis-Putnam Algorithm

From now on, unless otherwise indicated, we assume formulas are in CNF, or, equivalently, that we have a set of clauses to check for satisfiability (i.e. the conjunction is implicit).

The first algorithm to try something more sophisticated than the truth-table method was the *Davis-Putnam (DP)* algorithm, published in 1960.

It is often confused with the later, more popular algorithm presented by Davis, Logemann, and Loveland in 1962, which we will refer to as *Davis-Putnam-Logemann-Loveland (DPLL)*.

We first consider the original DP algorithm.
There are three satisfiability-preserving transformations in DP.

- The 1-literal rule
- The affirmative-negative rule
- The rule for eliminating atomic formulas

The first two steps reduce the total number of literals in the formula. The last step reduces the number of variables in the formula.

By repeatedly applying these rules, eventually we obtain a formula containing an empty clause, indicating unsatisfiability, or a formula with no clauses, indicating satisfiability.

The affirmative-negative rule

Also called the pure literal rule.

If a literal appears only positively or only negatively, delete all clauses containing that literal.

Why does this preserve satisfiability?

Rule for eliminating atomic formulas

Also called the resolution rule.

- Choose a propositional symbol p which occurs positively in at least one clause and negatively in at least one other clause.
- Let P be the set of all clauses in which p occurs positively.
- Let N be the set of all clauses in which p occurs negatively.
- Replace the clauses in P and N with those obtained by resolution on p using all pairs of clauses from P and N.

For a single pair of clauses, $(p \lor l_1 \lor \cdots \lor l_m)$ and $(\neg p \lor k_1 \lor \cdots \lor k_n)$, resolution on p forms the new clause $(l_1 \lor \cdots \lor l_m \lor k_1 \lor \cdots \lor k_n)$.

Suppose (p) is a unit clause (clause containing only one literal). Let $\neg p$ denote the negation of p where double negation is collapsed (i.e. $\neg \neg q \equiv q$).

- Remove all instances of $\neg p$ from clauses in the formula (shortening the corresponding clauses).
- Remove all clauses containing p (including the unit clause itself).
DPLL Algorithm

In the worst case, the resolution rule can cause a quadratic expansion every time it is applied.

For large formulas, this can quickly exhaust the available memory.

The DPLL algorithm replaces resolution with a splitting rule.

- Choose a propositional symbol \(p \) occurring in the formula.
- Let \(\Delta \) be the current set of clauses.
- Test the satisfiability of \(\Delta \cup \{p\} \).
- If satisfiable, return true.
- Otherwise, return the result of testing \(\Delta \cup \{\neg p\} \) for satisfiability.

Some Experimental Results

<table>
<thead>
<tr>
<th>Problem</th>
<th>tautology</th>
<th>dptaut</th>
<th>dplltaut</th>
</tr>
</thead>
<tbody>
<tr>
<td>prime 3</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>prime 4</td>
<td>0.02</td>
<td>0.06</td>
<td>0.04</td>
</tr>
<tr>
<td>prime 9</td>
<td>18.94</td>
<td>2.98</td>
<td>0.51</td>
</tr>
<tr>
<td>prime 10</td>
<td>11.40</td>
<td>3.03</td>
<td>0.96</td>
</tr>
<tr>
<td>prime 11</td>
<td>28.11</td>
<td>2.98</td>
<td>0.51</td>
</tr>
<tr>
<td>prime 16</td>
<td>>1 hour</td>
<td>out of memory</td>
<td>9.15</td>
</tr>
<tr>
<td>prime 17</td>
<td>>1 hour</td>
<td>out of memory</td>
<td>3.87</td>
</tr>
<tr>
<td>ramsey 3 3 5</td>
<td>0.03</td>
<td>0.06</td>
<td>0.02</td>
</tr>
<tr>
<td>ramsey 3 3 6</td>
<td>5.13</td>
<td>8.28</td>
<td>0.31</td>
</tr>
<tr>
<td>mk_adder_test 3 2</td>
<td>>>1 hour</td>
<td>6.50</td>
<td>7.34</td>
</tr>
<tr>
<td>mk_adder_test 4 2</td>
<td>>>1 hour</td>
<td>22.95</td>
<td>46.86</td>
</tr>
<tr>
<td>mk_adder_test 5 2</td>
<td>>>1 hour</td>
<td>44.83</td>
<td>170.98</td>
</tr>
<tr>
<td>mk_adder_test 5 3</td>
<td>>>1 hour</td>
<td>38.27</td>
<td>250.16</td>
</tr>
<tr>
<td>mk_adder_test 6 3</td>
<td>>>1 hour</td>
<td>out of memory</td>
<td>1186.4</td>
</tr>
<tr>
<td>mk_adder_test 7 3</td>
<td>>>1 hour</td>
<td>out of memory</td>
<td>3759.9</td>
</tr>
</tbody>
</table>

Incomplete SAT: GSAT

Input: a set of clauses \(F \), MAX-FLIPS, MAX-TRIES

Output: a satisfying truth assignment of \(F \) or \(\emptyset \), if none found

for \(i := 1 \) to MAX-TRIES
 \(v := \) a randomly generated truth assignment
 for \(j := 1 \) to MAX-FLIPS
 if \(v \) satisfies \(F \) then return \(v \)
 \(p := \) a propositional variable such that a change in its truth assignment gives the largest increase in the total number of clauses of \(F \) that are satisfied by \(v \)
 \(v := v \) with the assignment to \(p \) reversed
 end for
end for
return \(\emptyset \)
Abstract DPLL

We now return to DPLL. To facilitate a deeper look at DPLL, we use a high-level framework called Abstract DPLL.

- Abstract DPLL uses states and transitions to model the progress of the algorithm.
- Most states are of the form $M \parallel F$, where
 - M is a sequence of annotated literals denoting a partial truth assignment, and
 - F is the CNF formula being checked, represented as a set of clauses.
- The initial state is $\emptyset \parallel F$, where F is to be checked for satisfiability.
- Transitions between states are defined by a set of conditional transition rules.

Abstract DPLL Rules

UnitProp:

$M \parallel F, C \lor l \implies M \parallel F, C \lor l$ if

\[
\begin{cases}
M \models \neg C \\
l \text{ is undefined in } M
\end{cases}
\]

PureLiteral:

$M \parallel F \implies M \parallel F$ if

\[
\begin{cases}
l \text{ occurs in some clause of } F \\
\neg l \text{ occurs in no clause of } F \\
l \text{ is undefined in } M
\end{cases}
\]

Decide:

$M \parallel F \implies M \text{l} \parallel F$ if

\[
\begin{cases}
1 \text{ or } \neg l \text{ occurs in a clause of } F \\
l \text{ is undefined in } M
\end{cases}
\]

Backtrack:

$M \text{l} \parallel N \parallel F, C \implies M \neg l \parallel F, C$ if

\[
\begin{cases}
M \text{l} \parallel N \models \neg C \\
N \text{ contains no decision literals}
\end{cases}
\]

Fail:

$M \parallel F, C \implies \text{fail}$ if

\[
\begin{cases}
M \models \neg C \\
M \text{ contains no decision literals}
\end{cases}
\]

Example

$\emptyset \parallel 1 \lor \bar{2}, \bar{1} \lor 2, 2 \lor 3, 3 \lor 2, 1 \lor 4$
\[
\emptyset \ |\ 1 \lor \overline{2}, \ 2 \lor \overline{3}, \ 3 \lor \overline{2}, \ 1 \lor 4 \quad \Rightarrow \quad \text{(PureLiteral)}
\]

\[
4 \ |\ 1 \lor \overline{2}, \ 2 \lor \overline{3}, \ 3 \lor \overline{2}, \ 1 \lor 4
\]

\[
4 \quad \Rightarrow \quad \text{(Decide)}
\]

\[
4 \ 1^d \ |\ 1 \lor \overline{2}, \ 2 \lor \overline{3}, \ 3 \lor \overline{2}, \ 1 \lor 4
\]

\[
4 \ 1^d \ \overline{2} \ |\ 1 \lor \overline{2}, \ 2 \lor \overline{3}, \ 3 \lor \overline{2}, \ 1 \lor 4 \quad \Rightarrow \quad \text{(UnitProp)}
\]

\[
4 \ 1^d \ \overline{3} \ |\ 1 \lor \overline{2}, \ 2 \lor \overline{3}, \ 3 \lor \overline{2}, \ 1 \lor 4
\]
Example

<table>
<thead>
<tr>
<th>State</th>
<th>Literal Set</th>
<th>Rule</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\emptyset)</td>
<td>(1 \lor \bar{2}, \bar{1} \lor \bar{2}, 2 \lor 3, \bar{3} \lor 2, 1 \lor 4)</td>
<td>(PureLiteral)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>(1 \lor \bar{2}, \bar{1} \lor \bar{2}, 2 \lor 3, \bar{3} \lor 2, 1 \lor 4)</td>
<td>(Decide)</td>
<td></td>
</tr>
<tr>
<td>4 (1^d)</td>
<td>(1 \lor \bar{2}, \bar{1} \lor \bar{2}, 2 \lor 3, \bar{3} \lor 2, 1 \lor 4)</td>
<td>(UnitProp)</td>
<td></td>
</tr>
<tr>
<td>4 (1^e)</td>
<td>(1 \lor \bar{2}, \bar{1} \lor \bar{2}, 2 \lor 3, \bar{3} \lor 2, 1 \lor 4)</td>
<td>(UnitProp)</td>
<td></td>
</tr>
<tr>
<td>4 (1^e) (3)</td>
<td>(1 \lor \bar{2}, \bar{1} \lor \bar{2}, 2 \lor 3, \bar{3} \lor 2, 1 \lor 4)</td>
<td>(Backtrack)</td>
<td></td>
</tr>
<tr>
<td>4 (\bot)</td>
<td>(1 \lor \bar{2}, \bar{1} \lor \bar{2}, 2 \lor 3, \bar{3} \lor 2, 1 \lor 4)</td>
<td>(Backtrack)</td>
<td></td>
</tr>
<tr>
<td>4 (\bot) (3)</td>
<td>(1 \lor \bar{2}, \bar{1} \lor \bar{2}, 2 \lor 3, \bar{3} \lor 2, 1 \lor 4)</td>
<td>(UnitProp)</td>
<td></td>
</tr>
</tbody>
</table>

Result: Unsatisfiable

Example

<table>
<thead>
<tr>
<th>State</th>
<th>Literal Set</th>
<th>Rule</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\emptyset)</td>
<td>(1 \lor \bar{2}, \bar{1} \lor \bar{2}, 2 \lor 3, \bar{3} \lor 2, 1 \lor 4)</td>
<td>(PureLiteral)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>(1 \lor \bar{2}, \bar{1} \lor \bar{2}, 2 \lor 3, \bar{3} \lor 2, 1 \lor 4)</td>
<td>(Decide)</td>
<td></td>
</tr>
<tr>
<td>4 (1^d)</td>
<td>(1 \lor \bar{2}, \bar{1} \lor \bar{2}, 2 \lor 3, \bar{3} \lor 2, 1 \lor 4)</td>
<td>(UnitProp)</td>
<td></td>
</tr>
<tr>
<td>4 (1^e)</td>
<td>(1 \lor \bar{2}, \bar{1} \lor \bar{2}, 2 \lor 3, \bar{3} \lor 2, 1 \lor 4)</td>
<td>(UnitProp)</td>
<td></td>
</tr>
<tr>
<td>4 (1^e) (3)</td>
<td>(1 \lor \bar{2}, \bar{1} \lor \bar{2}, 2 \lor 3, \bar{3} \lor 2, 1 \lor 4)</td>
<td>(Backtrack)</td>
<td></td>
</tr>
<tr>
<td>4 (\bot)</td>
<td>(1 \lor \bar{2}, \bar{1} \lor \bar{2}, 2 \lor 3, \bar{3} \lor 2, 1 \lor 4)</td>
<td>(Backtrack)</td>
<td></td>
</tr>
<tr>
<td>4 (\bot) (3)</td>
<td>(1 \lor \bar{2}, \bar{1} \lor \bar{2}, 2 \lor 3, \bar{3} \lor 2, 1 \lor 4)</td>
<td>(UnitProp)</td>
<td></td>
</tr>
</tbody>
</table>

Abstract DPLL: Backjumping and Learning

The basic rules can be improved by replacing the Backtrack rule with the more powerful Backjump rule and adding a Learn rule:

Backjump:

\[M \lor^d N \models F, C \implies M \lor^l F, C \]

if \(M \lor^d N \models \neg C \), and there is some clause \(C' \lor l' \) such that:

- \(F, C \models C' \lor l' \) and \(M \models \neg C' \)
- \(l' \) is undefined in \(M \)
- \(l' \) or \(\neg l' \) occurs in \(F \) or in \(M \lor^d N \)

Learn:

\[M \models F \implies M \models F, C \]

if all atoms of \(C \) occur in \(F \)

\[F \models C \]
Abstract DPLL: Backjumping and Learning

The Backjump rule is best understood by introducing the notion of implication graph, a directed graph associated with a state $M \models F$ of Abstract DPLL:

- The vertices are the variables in M
- There is an edge from v_1 to v_2 if v_2 was assigned a value as the result of an application of UnitProp using a clause containing v_2.

When we reach a state in which $M \models \neg C$ for some $C \in F$, we add an extra conflict vertex and edges from each of the variables in C to the conflict vertex.

The clause to use for backjumping (called the conflict clause) is obtained from the resulting graph:

- We first cut the graph along edges in such a way that it separates the conflict vertex from all of the decision vertices.
- Then, every vertex with an outgoing edge that was cut is marked.
- For each literal l in M whose variable is marked, $\neg l$ is added to the conflict clause.

To avoid ever having the same conflict again, we can learn the conflict clause using the learn rule.

Example

$$\emptyset \models \top \lor 2, \ 3 \lor 4, \ 5 \lor 6, \ \overline{2} \lor \overline{5} \lor \overline{6}$$

Example

$$\emptyset \models \top \lor 2, \ 3 \lor 4, \ 5 \lor 6, \ \overline{2} \lor \overline{5} \lor \overline{6} \implies \text{(Decide)}$$

$$1^d \models \top \lor 2, \ 3 \lor 4, \ 5 \lor 6, \ \overline{2} \lor \overline{5} \lor \overline{6}$$
Example

<table>
<thead>
<tr>
<th>φ</th>
<th>(\top \lor 3 \lor \overline{5} \lor \overline{6} \lor \overline{2} \lor \overline{3} \lor \overline{5} \lor \overline{6}) (\rightarrow) (Decide)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1^{d})</td>
<td>(\top \lor 3 \lor \overline{5} \lor \overline{6} \lor \overline{2} \lor \overline{3} \lor \overline{5} \lor \overline{6}) (\rightarrow) (UnitProp)</td>
</tr>
<tr>
<td>(1^{d} 2)</td>
<td>(\top \lor 3 \lor \overline{5} \lor \overline{6} \lor \overline{2} \lor \overline{3} \lor \overline{5} \lor \overline{6}) (\rightarrow) (Decide)</td>
</tr>
</tbody>
</table>

Example

<table>
<thead>
<tr>
<th>φ</th>
<th>(\top \lor 3 \lor \overline{5} \lor \overline{6} \lor \overline{2} \lor \overline{3} \lor \overline{5} \lor \overline{6}) (\rightarrow) (Decide)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1^{d})</td>
<td>(\top \lor 3 \lor \overline{5} \lor \overline{6} \lor \overline{2} \lor \overline{3} \lor \overline{5} \lor \overline{6}) (\rightarrow) (UnitProp)</td>
</tr>
<tr>
<td>(1^{d} 2)</td>
<td>(\top \lor 3 \lor \overline{5} \lor \overline{6} \lor \overline{2} \lor \overline{3} \lor \overline{5} \lor \overline{6}) (\rightarrow) (Decide)</td>
</tr>
<tr>
<td>(1^{d} 2 3^{d})</td>
<td>(\top \lor 3 \lor \overline{5} \lor \overline{6} \lor \overline{2} \lor \overline{3} \lor \overline{5} \lor \overline{6}) (\rightarrow) (Decide)</td>
</tr>
<tr>
<td>(1^{d} 2 3^{d} 5^{d})</td>
<td>(\top \lor 3 \lor \overline{5} \lor \overline{6} \lor \overline{2} \lor \overline{3} \lor \overline{5} \lor \overline{6}) (\rightarrow) (Decide)</td>
</tr>
</tbody>
</table>
Example

\[\emptyset \mid T \lor 2, 3 \lor 4, 5 \lor 6, 2 \lor 5 \lor 6 \implies \text{(Decide)} \]

\[1^d \mid T \lor 2, 3 \lor 4, 5 \lor 6, 2 \lor 5 \lor 6 \implies \text{(UnitProp)} \]

\[1^d 2 \mid T \lor 2, 3 \lor 4, 5 \lor 6, 2 \lor 5 \lor 6 \implies \text{(Decide)} \]

\[1^d 2 3^d \mid T \lor 2, 3 \lor 4, 5 \lor 6, 2 \lor 5 \lor 6 \implies \text{(Decide)} \]

\[1^d 2 3^d 5^d \mid T \lor 2, 3 \lor 4, 5 \lor 6, 2 \lor 5 \lor 6 \implies \text{(UnitProp)} \]

\[1^d 2 3^d 5^d 6 \mid T \lor 2, 3 \lor 4, 5 \lor 6, 2 \lor 5 \lor 6 \implies \text{(Learn)} \]

\[1^d 2 3^d 5^d 6 \mid T \lor 2, 3 \lor 4, 5 \lor 6, 2 \lor 5 \lor 6, 2 \lor 5 \]

Result: Satisfiable

Abstract DPLL Rules

Two final rules also have to do with learning:

- If too many clauses are learned, performance suffers. It is useful to forget some clauses (typically those that have not participated in an application of UnitProp for a while).
- If we are stuck, we can restart by throwing away \(M \). Since we have learned clauses, this means our efforts were not entirely wasted. Randomly restarting can improve performance dramatically.

Forget:

\[M \parallel F, C \implies M \parallel F \quad \text{if} \quad \{ F \models C \} \]

Restart:

\[M \parallel F \implies \emptyset \parallel F \]
Decision Heuristics

The rules do not give any strategy for how to pick a variable when applying Decide.

In practice, this is critical for performance.

There are many heuristics, but the most successful currently use very cheap heuristics to try to prefer variables that are frequently involved in conflicts.

Boolean Constraint Propagation

The most expensive part of a SAT solver is the part that checks for and applies instances of the UnitProp rule.

A key insight that can be used to speed this up is that as long as a clause has at least two unassigned literals, it cannot participate in an application of UnitProp.

For every clause, we assign two of its unassigned literals as the watched literals.

Every time a literal is assigned, only those clauses in which it is watched need to be checked for a possible triggering of the UnitProp rule.

For those clauses that are inspected, if UnitProp is not triggered, a new unassigned literal is chosen to be watched.

Other Considerations

Modern SAT solvers have a number of other tricks to speed things up:

- Highly tuned code
- Optimization for cache performance
- Preprocessing and clever CNF encodings
- Automatic tuning of program parameters

What is the state-of-the-art?

http://www.satcompetition.org/

SAT 2009 Competition

- Over 30 solvers
- 3 benchmark categories
 - Application
 - Crafted
 - Random

Some of the winners:

- Application: precosat, glucose, lysat
- Crafted: clasp, SATzilla, IUT_BMB_SAT
- Random: SATzilla, March hi
Modeling for SAT

Modeling

- Define a finite set of possibilities called *states*.
- Model states using (vectors of) propositional variables.
- Use propositional formulas to describe legal and illegal states.
- Construct a propositional formula describing the desired state.

Solving

- Translate the formula into CNF.
- If the formula is satisfiable, the satisfying assignment gives the desired state.
- If the formula is not satisfiable, the desired state does not exist.

Example: Graph Coloring

Problems involving *graph coloring* are important in both theoretical and applied computer science.

Recall that a *graph* consists of a set V of vertices and a set E of edges, where each edge is an *unordered* pair of *distinct* vertices.

A *complete graph* on n vertices is a graph with $|V| = n$ such that E contains all possible pairs of vertices.

How many edges are in a complete graph? $\frac{n(n-1)}{2}$

Example: Graph Coloring

Suppose we wish to color each edge of a complete graph without creating any triangles in which all the edges have the same color.

What is the largest complete graph for which this is possible? The answer depends on the number of colors we are allowed to use.

What if you are only allowed one color? **Answer:** $n = 2$

What if the number of colors is 2? **Answer:** $n = 5$

What if the number of colors is 3? This is a job for **SAT**
Example: Graph Coloring

- Construct a propositional formula describing the desired state.

The desired state is one in which there are no triangles of the same color. For each triangle made up of edges \(e, f, g \), we require:
 \[
 \neg((e_1 \leftrightarrow f_1) \land (f_1 \leftrightarrow g_1) \land (e_2 \leftrightarrow f_2) \land (f_2 \leftrightarrow g_2)).
 \]

- Translate the formula into an equisatisfiable CNF formula. This can be done using the CNF conversion algorithm described earlier.

- If the formula is satisfiable, the satisfying assignment gives the desired state.

 An actual coloring can be constructed by looking at the values of each variable given by the satisfying assignment.

Example: Graph Coloring

- If the formula is not satisfiable, the desired state does not exist.

 If the formula can be shown to be unsatisfiable, this is proof that there is no coloring.

What if the number of colors is 3?

Answer: \(n = 16 \)

Modeling

Let us consider a circuit example.

Circuit Example

[Diagram of a circuit example with variables and functions such as \(x, y, z, +1, \) and \(\text{test} \).]
One way to prove the property of the circuit is by induction. The inductive step is essentially the following:

\[(y = x + 1 \text{ AND } z = x + 2 \text{ AND} \]
\[x' = \text{IF } a \text{ THEN } x \text{ ELSE } y \text{ AND} \]
\[y' = \text{IF } a \text{ THEN } y \text{ ELSE } z \text{ AND} \]
\[z' = \text{IF } a \text{ THEN } z \text{ ELSE } y + 2) \implies \]
\[y' = x' + 1 \text{ AND } z' = x' + 2 \]

We can prove this formula by showing that the negation is unsatisfiable.

We can write this formula in propositional logic by using one propositional variable for each bit in the current and next states.

Modeling: Transition Systems

Often, we want to model a system as a **transition system**: a system with a set of states and a set of possible transitions between states.

Suppose \(Q\) is a set of states, \(Q_0 \subseteq Q\) a set of initial states, and \(T\) a transition relation on states (i.e. \(T \subseteq Q \times Q\)).

Since \(Q\) is finite, we can find an \(m\) such that \(2^m \geq |Q|\). We can then use \(m\) variables: \(\vec{x} = [x_1, \ldots, x_m]\) to represent the states. These are called **state variables**.

To represent \(T\), we need \(m\) additional variables, \(\vec{y} = [y_1, \ldots, y_m]\), which we call **next-state variables**.

We can write formulas \(F_{Q_0}(\vec{x})\) and \(F_T(\vec{y})\) such that the solutions of \(F_{Q_0}(\vec{x})\) correspond to initial states in \(Q_0\) and the solutions of \(F_T(\vec{x}, \vec{y})\) correspond to valid transitions in \(T\).

Bounded Model Checking

Bounded Model Checking can be used to determine whether a state is reachable from the initial state in some bounded number of transitions.

To perform bounded model checking to a depth of \(n\) using SAT, we need \(n\) extra copies of the state variables and a set of states \(Q_P\) that we are trying to reach.

Let \(\vec{x}_0, \ldots, \vec{x}_n\) be \(n + 1\) copies of the state variables. And let \(F_{Q_P}(\vec{x})\) be a formula that is true for the states in \(Q_P\).

\(Q_P\) is reachable in \(n\) steps iff the following formula is satisfiable:

\[F_{Q_0}(\vec{x}_0) \land F_T(\vec{x}_0, \vec{x}_1) \land \cdots \land F_T(\vec{x}_{n-1}, \vec{x}_n) \land F_{Q_P}(\vec{x}_n).\]
Exercise

You have probably seen the following puzzle before. There is a triangle of 15 pegs with one missing. You have to jump pegs until there is only one left.

```
X
X X
X O X
X X X X
X X X X X
X X X X X
```

Exercise

Can you solve this puzzle?
Can you solve this puzzle using SAT?

Code for graph coloring problem is at http://www.cs.nyu.edu/~barrett/tmp/colors.tar