1 Closure Properties

Lemma 1 Let A and B be languages recognized by PDAs M_A and M_B, respectively, then $A \cup B$ is also recognized by a PDA called $M_{A \cup B}$.

Proof: The graph of $M_{A \cup B}$ consists of the graphs of M_A and M_B plus a new start vertex $start_{A \cup B}$, which is joined by λ-edges to the start vertices $start_A$ and $start_B$ of M_A and M_B, respectively. Its final vertices are the final vertices of M_A and M_B. The graph is shown in figure 1.

![Figure 1: PDA $M_{A \cup B}$](image)

While it is clear that $L(M_{A \cup B}) = L(M_A) \cup L(M_B)$, we present the argument for completeness.
First, we show that $L(M_{A\cup B}) \subseteq L(M_A) \cup L(M_B)$. Let $w \in L(M_{A\cup B})$. Then there is a w-recognizing computation path from $start_{A\cup B}$ to a final vertex f. If f lies in M_A, then removing the first edge of P leaves a path P' from $start_A$ to f. Further, at the start of P', the stack is empty and nothing has been read, so P' is a w-recognizing path in M_A. That is, $w \in L(M_A)$. Similarly, if f lies in M_B, then $w \in L(M_B)$. Either way, $w \in L(M_{A\cup B})$.

Second, we show that $L(M_A) \cup L(M_B) \subseteq L(M_{A\cup B})$. Suppose that $w \in L(M_A)$. Then there is a w-recognizing computation path P' from $start_A$ to a final vertex f in M_A. Adding the λ-edge $(start_{A\cup B}, start_A)$ to the beginning of P' creates a w-recognizing computation path in $M_{A\cup B}$, showing that $L(M_A) \subseteq L(M_{A\cup B})$. Similarly, if $w \in L(M_B)$, then $L(M_B) \subseteq L(M_{A\cup B})$.

Our next construction is simplified by the following technical lemma.

Lemma 2 Let PDA M recognize L. There is a PDA M' which recognizes L; further M' has only one final vertex, final$_{M'}$, and M' will always have an empty stack when it reaches final$_{M'}$.

Proof: The idea is quite simple. M' simulates M using a $\$$-shielded stack. When M's computation is complete, M' moves to a new stack-emptying vertex, stack-empty, at which M' empties its stack of everything apart from the $\$$-shield. To then move to final$_{M'}$, M' pops the $\$$, thus ensuring it has an empty stack when it reaches final$_{M'}$. M' is illustrated in Figure 2. More precisely, M' consists of the graph of M plus three new vertices; start$_{M'}$, stack-empty, and final$_{M'}$. The following edges are also added: $(start_M, start_M)$ labeled Push $\$$, λ-edges from each of M's final vertices to stack-empty, self-loops (stack-empty, stack-empty) labeled Pop X for each $X \in \Gamma$, where Γ is M's stack alphabet (so $\$$ \neq X), and edge (stack-empty, final$_{M'}$) labeled Pop $\$.

It is clear that $L(M) = L(M')$. Nonetheless, we present the argument for completeness.
First, we show that $L(M') \subseteq L(M)$. Let $w \in L(M')$. Let P' be a w-recognizing path in M' and let f be the final vertex of M preceding stack-empty on the path P'. Removing the first edge in P' and every edge including and after $(f, \text{stack-empty})$, leaves a path P which is a w-recognizing path in M. Thus $L(M') \subseteq L(M)$.

Now we show $L(M) \subseteq L(M')$. Let $w \in L(M)$ and let P be a w-recognizing path in M. Suppose that P ends with string s on the stack at final vertex f. We add the edges $(\text{start}_{M'}, \text{start}_M)$, $(f, \text{stack-empty})$, $|s|$ self-loops at stack-empty, and $(\text{stack-empty}, \text{final}_{M'})$ to P, yielding path P' in M'. By choosing the self-loops to be labeled with the characters of s^R in this order, we cause P' to be a w-recognizing path in M'. Thus $L(M) \subseteq L(M')$.

\textbf{Lemma 3} Let A and B be languages recognized by PDAs M_A and M_B, respectively, Then $A \circ B$ is also recognized by a PDA called $M_{A\circ B}$.

\textbf{Proof}: Let M_A and M_B be PDAs recognizing A and B, respectively, where they each have just one final vertex that can be reached only with an empty stack.

$M_{A\circ B}$ consists of M_A, M_B plus one λ-edge $(\text{final}_A, \text{start}_B)$. Its start vertex is start$_A$ and its final vertex is final$_B$. To see that $L(M_{A\circ B}) = A \circ B$ is straightforward. For $w \in L(M_{A\circ B})$ if and only if there is a w-recognizing path P in $M_{A\circ B}$; P is formed from a path P_A in M_A going from start$_A$ to final$_A$ (and which therefore ends with an empty stack), λ-edge $(\text{final}_A, \text{start}_B)$, and a path P_B in M_B going from start$_B$ to final$_B$. Let u be the sequence of reads labeling P_A and v those labeling P_B. Then $w = uv$, P_A is u-recognizing, and P_B is v-recognizing (see Figure 3). So $w \in L(M_{A\circ B})$ if and only if $w = uv$, $u \in L(M_A) = A$ and $v \in L(M_B) = B$. In other words $w \in L(M_{A\circ B})$ if and only if $w \in A \circ B$.

\textbf{Lemma 4} Suppose that L is recognized by PDA M_L and suppose that R is a regular language. Then $L \cap R$ is recognized by a PDA called $M_{L\cap R}$.

\textbf{Proof}: Let $M_L = (\Sigma, \Gamma_L, V_L, \text{start}_L, F_L, \delta_L)$ and let R be recognized by DFA $M_R = (\Sigma, \Gamma_R, \text{start}_R, F_R, \delta_R)$. We will construct $M_{L\cap R}$. The vertices of $M_{L\cap R}$ will be 2-tuples, the first component corresponding to a vertex of M_L and the second component
to a vertex of M_R. The computation of $M_{L \cap R}$, when looking at the first components along with the stack will be exactly the computation of M_L, and when looking at the second components, but without the stack, it will be exactly the computation of M_R. This leads to the following edges in $M_{L \cap R}$.

1. If M_L has an edge (u_L, v_L) with label Pop A, Read b, Push C and M_R has an edge (u_R, v_R) with label b, then $M_{L \cap R}$ has an edge $((u_L, u_R), (v_L, v_R))$ with label Pop A, Read b, Push C.

2. If M_L has an edge (u_L, v_L) with label Pop A, Read λ, Push C then $M_{L \cap R}$ has an edge $((u_L, u_R), (v_L, u_R))$ with label Pop A, Read b, Push C for every $u_L \in V_R$.

The start vertex for $M_{L \cap R}$ is $(\text{start}_L, \text{start}_R)$ and its set of final vertices is $F_L \times F_R$, the pairs of final vertices, one from M_L and one from M_R, respectively.

Assertion. $M_{L \cap R}$ can reach vertex (v_L, v_R) on input w if and only if M_L can reach vertex v_L and M_R can reach vertex v_R on input w.

Next, we argue that the assertion is true. For suppose that on input w, $M_{L \cap R}$ can reach vertex (v_L, v_R) by computation path $P_{L \cap R}$. If we consider the first components of the vertices in $P_{L \cap R}$, we see that it is a computation path of M_L on input w reaching vertex v_L. Likewise, if we consider the second components of the vertices of $M_{L \cap R}$, we obtain a path P'_R. The only difficulty is that this path may contain repetitions of a vertex u_R corresponding to reads of λ by $M_{L \cap R}$. Eliminating such repetitions creates a path P_R in M_R reaching v_R and having the same label w as path P'_R.

Conversely, suppose that M_L can reach v_L by computation path P_L and M_R can reach v_R by computation path P_R. Combining these paths, with care, gives a computation path P which reaches (v_L, v_R) on input w. We proceed as follows. The first vertex is $(\text{start}_L, \text{start}_R)$. Then we traverse P_L and P_R in tandem. Either the next edges in P_L and P_R are both labeled by a Read b (simply a b on P_R) in which case we use Rule (1) above to give the edge to add to P, or the next edge on P_L is labeled by Read λ (together with a Pop and a Push possibly) and then we use Rule (2) to give the edge to add to P. In the first case we advance one edge on both P_L and P_R, in the second case we only advance on P_L. Clearly, the path ends at vertex (v_L, v_R) on input w.

It is now easy to see that $L(M_{L \cap R}) = L \cap R$. For on input w, $M_{L \cap R}$ can reach a final vertex $v \in F = F_L \times F_R$ if and only if on input w, M_L reaches a vertex $v_L \in F_L$ and M_R reaches a vertex $v_R \in F_R$. That is, $w \in L(M_{L \cap R})$ if and only if $w \in L(M_L) = L$ and $w \in L(M_R) = R$, or in other words $w \in L(M_{L \cap R})$ if and only if $w \in L \cap R$.

\[\square\]