1. (a) Show that if $R \subseteq S$ then $R \cap \overline{S} = \emptyset$.
 (b) Let $\text{Reg-Contain} = \{\langle M_R, M_S \rangle \mid M_R$ and M_S are DFAs recognizing regular languages R and S respectively, and $R \subseteq S\}$.
 Show that Reg-Contain is decidable.
 Hint: Use a reduction to Empty-DFA.
 (c) Now let $\text{Reg-Contain-Sym} = \{\langle M_R, M_S \rangle \mid M_R$ and M_S are DFAs recognizing regular languages R and S respectively, and either $R \subseteq S$ or $S \subseteq R\}$.
 Show that Reg-Contain-Sym is decidable.

2. Let $\text{Reg-Rev} = \{\langle M \rangle \mid M$ is a DFA and for each $w \in \Sigma^*$, where Σ is the input alphabet for M, if M recognizes w then M also recognizes $w^R\}$.
 Show that Reg-Rev is decidable. You may assume the result of Problem 4, Homework 3.
 Hint. Let M^R be a DFA recognizing $(L(M))^R$: M^R recognizes the reversal of strings recognized by M. If $M \in \text{Reg-Rev}$, what is the relationship between $L(M)$ and $L(M^R)$? Your decision procedure needs to test whether this relationship holds.

3. Let $\text{Reg-No-Ext} = \{\langle M \rangle \mid M$ is a DFA such that if w is a string recognized by M, then no extension of w, no string wx with $|x| \geq 1$, is recognized by $M\}$. Show that Reg-No-Ext is decidable.
 Hint. What can you say about M’s graph if the strings it recognizes satisfy the no-extension property? Specifically, suppose that $w \in L(M)$ and the w-recognizing path ends at final vertex f. What can and cannot be reached from f?

4. Let $\text{CFL-Int-a-Star} = \{\langle G \rangle \mid G$ is a context free grammar, and $L(M)$, the language it generates, satisfies $L(M) \cap a^* \neq \emptyset\}$. Show that CFL-Int-a-Star is decidable.
 Hint. Use a reduction to Empty-CFL.