1. (a) Let \(w \in \{a, b, c\}^* \). Define \(\text{Remove-c}(w) \) to be the string obtained by deleting all instances of the character \(c \) from \(w \). e.g. \(\text{Remove-c}(ab) = ab \), \(\text{Remove-c}(cc) = \lambda \), \(\text{Remove-c}(abc) = ab \), \(\text{Remove-c}(acacac) = aaa \).

Let \(L \) be a language over the alphabet \(\{a, b, c\} \). Define \(\text{Remove-c}(L) = \{x \mid x = \text{Remove-c}(w) \text{ for some } w \in L\} \).

Suppose that \(L \) is a CFL. Show that \(\text{Remove-c}(L) \) is also a CFL by giving a CFG to generate \(\text{Remove-c}(L) \).

(b) Now define \(\text{Remove-One-c}(w) \) to be the set of strings obtained by deleting one instances of the character \(c \) from \(w \). e.g. \(\text{Remove-One-c}(acacac) = \{aacac, acaac, acaca\} \).

Let \(L \) be a language over the alphabet \(\{a, b, c\} \). Define \(\text{Remove-One-c}(L) = \{x \mid x = \text{Remove-One-c}(w) \text{ for some } w \in L\} \).

Suppose that \(L \) is a CFL. Show that \(\text{Remove-One-c}(L) \) is also a CFL by giving a CFG to generate \(\text{Remove-One-c}(L) \).

2. (a) Let \(E = \{a^i b^j \mid i < j\} \). Give a CFL to generate \(E \).

(b) Let \(F = \{a^i b^j \mid i > 2j\} \). Give a CFL to generate \(F \).

(c) Let \(I = \{a^i b^j \mid j < i < 2j\} \). Give a CFL to generate \(I \).

3. Show that the following languages are not context free. Remember to give the full argument when using the Pumping Lemma, as shown in my handouts.

(a) \(A = \{a^m b^n c^m d^n \mid m, n \geq 0\} \).

(b) \(B = \{w \mid w \in \{a, b, c\}^* \text{ and the number of } a's, b's \text{ and } c's \text{ in } w \text{ are all equal}\} \).

(c) \(C = \{a^{2i} \mid i \geq 0\} \).

Comment. Any CFL over a 1-character alphabet is a regular language. I am not asking you to prove this and you may not use this fact.

(d) \(D = \{x_1 \# x_2 \# \cdots \# x_k \mid x_h \in \{a, b\}^*, 1 \leq h \leq k, \text{ and for some } i, j, 1 \leq i < j \leq k, x_i = x_j\} \).