1. Give CFG’s to generate the following languages.

(a) \(A = \{ w \mid w \in \{a, b\}^* \text{ and } w = w^R \}. \) \(A \) is the language of palindromes, strings that read the same forward and backward.
 Hint: Be sure to handle strings of all possible lengths.

(b) \(B = \{ w\#x \mid w, x \in \{a, b\}^* \text{ and } w^R \text{ is an initial substring of } x \}. \)
 Hint: \(x \) can be written as \(x = w^Ry \) for some \(x \in \{a, b\}^* \).

(c) \(C = \{ w \mid w \in \{a, b\}^* \text{ and } w \text{ contains an equal number of } a \text{'s and } b \text{'s} \}. \)
 Hint: suppose that the first character in \(w \) is an \(a \). Let \(x \) be the shortest initial substring of \(w \) having an equal number of \(a \text{'s and } b \text{'s}. \) If \(|x| < |w| \), then \(w \) can be written as \(w = xy \); what can you say about \(y \)? Otherwise, \(x = w \) and \(w \) can be written as \(w = azb \); what can you say about \(z \)?

2. Let \(A \) be a CFL generated by a CFG \(G_A \). Give a CFG grammar \(G_{A^*} \), based on \(G_A \), to generate \(A^* \). Argue that \(L(G_{A^*}) = A^* \).

3. Let \(A \) be a CFL generated by a CFG \(G_A \) with start symbol \(S_A \). Consider adding the rule \(S_A \rightarrow S_A S_A \) to the grammar \(G_A \), and let \(B \) be the language generated by the changed grammar. Give an example language \(A \) for which \(B \neq A^* \).

4. Convert the following CFG to CNF form. It has start variable \(S \), terminal set \(\{a, b, c\} \) and rules
 \[S \rightarrow SBS \mid BC; \ B \rightarrow ab \mid \lambda; \ C \rightarrow c \mid \lambda. \]