1. Draw the graphs of NFAs recognizing the following languages.

 (a) $L = a^*$, using a 1-vertex NFA.

 (b) $L = \{w \mid w \text{ has } aa \text{ as a substring}\}$, using a 3-vertex NFA.

 (c) $L = \{w \mid w \text{ ends with } bb\}$, using a 3-vertex NFA.

 (d) $L = \{w \mid w \text{ is of even length or the second symbol in } w \text{ is a } b \text{ (or both)}\}$, using a 5-vertex NFA.

2. Using the methods of Section 1.1 in *Finite Automata, Part 2*, give the graphs of NFAs that recognize the following languages.

 (a) $A \cup B$, where $A = \{w \mid w \text{ begins with an } a\}$, $B = \{x \mid x \text{ ends with a } b\}$, and $A, B \subseteq \{a, b\}^*$.

 (b) $C \circ D$ where $C = \{w \mid |w| \geq 2\}$, $D = \{x \mid x \text{ contains } aa \text{ as a substring}\}$, and $C, D \subseteq \{a, b\}^*$.

 (c) E^*, where $E = \{w \mid \text{all characters in even positions in } w \text{ are } a's\}$, and $E \subseteq \{a, b\}^*$.

 (d) $F = \Phi^*$ (recall that Φ is the empty language). Trust the construction. What strings, if any, are in Φ^*?

3. (a) Construct an NFA recognizing the language $L = \{ba, bab\}^*$.

 (b) Convert this NFA to a DFA recognizing the same language using the method of Section 1.2 of *Finite Automata, Part 2*. You need show only the portion of the DFA reachable from the start vertex.

4. Let L be a regular language. Define the reverse of L, $L^R = \{w \mid w^R \in L\}$, i.e. L^R contains the reverse of strings in L (for $(x^R)^R = x$ for any string x). Show that L^R is also regular.

 Hint. Suppose that M is a DFA (or an NFA if you prefer) recognizing L. Construct an NFA M^R that recognizes L^R; M^R will be based on M. Remember to argue that $L(M^R) = L^R$.