1. Let $Sometime-Halt = \{\langle Q \rangle \mid Q \text{ halts on at least one input}\}$.

 Suppose that you are given an algorithm $A_{Sometime-Halt}$ that decides $Sometime-Halt$. Using $A_{Sometime-Halt}$ as a subroutine, give an algorithm A_H to decide H.

2. Let $Mixed = \{\langle Q \rangle \mid Q \text{ halts on input 0 and does not halt on input 1}\}$.

 Suppose that you are given an algorithm A_{Mixed} that decides $Mixed$. Using A_{Mixed} as a subroutine, give an algorithm A_H to decide H.

3. Let $Useless-Var = \{\langle Q \rangle \mid Q \text{ contains a variable that remains zero whatever the input to } Q\}$.

 Suppose that you are given an algorithm $A_{Useless-Var}$ that decides $Useless-Var$. Using $A_{Useless-Var}$ as a subroutine, give an algorithm A_H to decide H.

4. Let $Inf-Halt = \{\langle Q \rangle \mid Q \text{ halts on infinitely many inputs}\}$.

 Suppose that you are given an algorithm $A_{Inf-Halt}$ that decides $Inf-Halt$. Using $A_{Inf-Halt}$ as a subroutine, give an algorithm A_H to decide H, or give an algorithm to decide some other undecidable language encountered on the handout Undecidability, Part 2.

5. Let $Inf-Not-Halt = \{\langle Q \rangle \mid Q \text{ fails to halt on infinitely many inputs}\}$.

 Suppose that you are given an algorithm $A_{Inf-Not-Halt}$ that decides $Inf-Not-Halt$. Using $A_{Inf-Not-Halt}$ as a subroutine, give an algorithm A_H to decide H, or give an algorithm to decide some other undecidable language encountered on the handout Undecidability, Part 2.