1 More Decision Algorithms for Context Free Languages

Next, we describe a more efficient algorithm Eff-$A_{Rec-CFG}$, for determining if a CNF grammar G can generate a string w. It runs in time $O(mn^3)$, where m is the number of rules in G and $n = |w|$.

First, we introduce a little notation. $w = w_1w_2 \cdots w_n$, where each $w_i \in T$, the terminal alphabet, for $1 \leq i \leq n$. w_i^l denotes the length l substring of w beginning at w_i: $w_i^l = w_i w_{i+1} \cdots w_{i+l-1}$.

Eff-$A_{Rec-CFG}$ uses dynamic programming. Specifically, in turn, for $l = 1, 2, \cdots, n$, it determines, for each variable A, whether A can generate w_i^l, for each possible value of i, i.e. for $1 \leq i \leq n-l+1$. This information suffices, for G can generate w exactly if $S \Rightarrow^* w_1^n$, when S is G’s start variable.

For $l = 1$, the test amounts to asking whether $A \rightarrow w_i$ is a rule.

For $l > 1$, the test amounts to the following question:

Is there a rule $A \rightarrow BC$, and a length k, with $1 \leq k < l$, such that B generates the length k substring of w beginning at w_i, and such that C generates the remainder of w_i^l (i.e. $B \Rightarrow^* w_i^k$ and $C \Rightarrow^* w_i^l - w_i^{l-k}$). Note that the results of the tests involving B and C have have already been computed, so for a single rule and a single value of k, this test runs in $O(1)$ time.

Summing the running times over all possible values of i, k, l, and all m rules yields the overall running time of $O(mn^3)$.

This shows:

Lemma 1 The decision procedure for language Rec-CFG runs in time $O(mn^3)$ on input (M,w), where $n = |w|$ and m is the number of rules in G.

Example 2 Inf-CFG = $\{G \mid G$ is a CNF grammar and $L(G)$ is infinite$\}$.
Claim 3 *Inf-CFG is decidable.*

Proof: Note that $L(G)$ is infinite exactly if there is a path in a derivation tree with a repeated variable. The following algorithm, $A_{\text{inf-CFG}}$ identifies the variables that can be repeated in this way; $L(G)$ is infinite exactly if there is at least one such variable. $A_{\text{inf-CFG}}$ proceeds in several steps.

Step 1. This step identifies *useful* variables, variables that generate non-empty strings of terminals.

This can be done using a marking procedure. First, $A_{\text{inf-CFG}}$ marks the variables A for which there is a rule of the form $A \rightarrow a$. Then, iteratively, for each rule $A \rightarrow BC$, where both B and C are marked, it also marks A, continuing until no additional variables can be marked. The marked variables are exactly the useful variables.

Step 2. $A_{\text{inf-CFG}}$ now identifies the *reachable useful* variables, i.e. those useful variables for which there is a derivation $S \Rightarrow^* \sigma A \tau$, where $\sigma, \tau \in V^*$, with V being G's variable set and S its start variable. This is done via the following marking process.

Step 2.1. $A_{\text{inf-CFG}}$ marks S.

Step 2.2. For each unprocessed variable A, $A_{\text{inf-CFG}}$ marks all variables on the RHS of a rule with A on the LHS.

When this process terminates, the marked variables are exactly the reachable useful variables.

Step 3. Finally, $A_{\text{inf-CFG}}$ identifies the repeating, reachable useful variables, namely the variables that can repeat on a derivation tree path.

To do this, $A_{\text{inf-CFG}}$ uses a procedure analogous to the one used in Step 2: For each reachable useful variable A, $A_{\text{inf-CFG}}$ determines the variables reachable from A; if this collection includes A, then A is repeating.

\[\]