1. Give a deduction (from \emptyset) of ($\forall x \phi$) \rightarrow $\exists x \phi$.

2. (Re-replacement lemma)

 (a) Show by example that $(\phi^x_y)^y$ is not in general equal to ϕ. Show that it is possible both for x to occur in $(\phi^x_y)^y$ at a place where it does not occur in ϕ, and for x to occur in ϕ at a place where it does not occur in $(\phi^x_y)^y$.

 (b) Show that if y does not occur at all in ϕ, then x is substitutable for y in ϕ^x_y and $(\phi^x_y)^y = \phi$.

 Suggestion: use induction on ϕ.

3. Show that the transitivity of equality follows from the axioms, that is,

 $\vdash \forall x \forall y \forall z (x = y \rightarrow (y = z \rightarrow x = z))$.

4. Prove that Axiom Groups 3 and 4 are valid.

5. Prove the equivalence of the following two statements.

 (a) If $\Gamma \models \phi$, then $\Gamma \vdash \phi$.

 (b) Any consistent set of formulas is satisfiable.

6. Let $\Gamma = \{-\forall v_1 P v_1, P v_1, P v_2, P v_3, \ldots\}$. Is Γ consistent? Is Γ satisfiable?