1. Consider the following definition of a Ramsey number:

 The *Ramsey number* $r(x_1, \ldots, x_n)$ is the smallest integer p such that if a complete graph G on p vertices is colored with n colors, then for some i, $1 \leq i \leq n$, there must exist a complete subgraph of G with x_i vertices, all of whose edges have the same color.

 Thus, $r(3, 3)$ is a number p, such that every complete graph on p or more vertices whose edges are colored with 2 colors, must contain a triangle all of whose edges are colored by the same color.

 (a) Write a propositional formula which is satisfiable iff $r(3, 3) > 5$.
 (b) If not already in CNF, convert your formula to CNF.
 (c) Write a CNF formula which is unsatisfiable iff $r(3, 3) \leq 6$.

2. Bonus: Let Σ be an effectively enumerable set of wffs. Assume that for each wff τ, either $\Sigma \models \tau$ or $\Sigma \models \neg \tau$ (or both). Show that the set of tautological consequences of Σ is decidable.