Reductions among String Problems

Richard Cole

November 7, 2007

Problem 1 \(A_{\text{Prog}} = \{ \langle P, w \rangle \mid P \text{ is a program, } w \text{ an input to } P \text{ and } P \text{ eventually halts on input } w \} \).

We have already shown that \(A_{\text{Prog}} \) is undecidable. We will revisit this proof.

Definition Let \(P \) be a program. Define \(L(P) = \{ x \mid x \text{ is an input to } P \text{ and } P \text{ halts on input } x \} \).

Problem 2 \(\text{REG} = \{ \langle P \rangle \mid P \text{ is a program and } L(P) \text{ is regular} \} \).

Claim \(A_{\text{Prog}} \) is reducible to \(\text{REG} \).

Proof Given a program \(P_{\text{REG}} \) to decide \(\text{REG} \), we construct a program \(P_{A_{\text{Prog}}} \) to decide \(A_{\text{Prog}} \).

Here is \(P_{A_{\text{Prog}}} \).

On input \(\langle P, w \rangle \):

Step 1: Construct a program \(Q \) such that \(L(Q) \) is regular if \(P \) halts on input \(w \), and \(L(Q) \) is not regular otherwise. In particular, if \(L(Q) \) is regular it will be \((a \cup b)^* \), and otherwise it will be the non-regular language \(A = \{ a^i b^i \mid i \geq 0 \} \). \(Q \) is the following program:

On input \(x \):

- if \(x = a^i b^i \), for some \(i \geq 0 \), then halt;
- otherwise run \(P \) on input \(w \).

We see that if \(P \) halts on input \(w \), \(Q \) halts on all its inputs, namely on \((a \cup b)^* \). While if \(P \) does not halt on input \(w \), \(Q \) halts on exactly \(A \).

Step 2 Run \(P_{\text{REG}}(\langle Q \rangle) \) and output \(P_{\text{REG}} \)'s output.

\(P_{\text{REG}} \) outputs accept if \(L(Q) \) is regular, which is the case if \(P \) halts on input \(w \), while \(P_{\text{REG}} \) outputs reject if \(P \) does not halt on input \(w \).

\(\square \)

Corollary \(\text{REG} \) is not decidable.

Problem 3 \(E_{\text{Prog}} = \{ \langle P \rangle \mid P \text{ does not halt on any input} \} \).

Claim \(A_{\text{Prog}} \) is reducible to \(E_{\text{Prog}} \).

Proof We need to show how, given a program \(P_{E_{\text{Prog}}} \) to decide \(E_{\text{Prog}} \), we can construct a program \(P_{A_{\text{Prog}}} \) to decide \(A_{\text{Prog}} \). Here is \(P_{A_{\text{Prog}}} \).
On input \((P, w)\):

Step 1. Construct a new program \(Q_w\) which behaves as follows.

Definition of \(Q_w\):
- On input \(x\): if \(x \neq w\) then loop forever. Otherwise run \(P\) on input \(w\).

Step 2 Run \(P_{\text{Eprog}}(\langle Q_w \rangle)\), and output its result reversed (output accept if \(P_{\text{Eprog}}\) rejects, output reject if \(P_{\text{Eprog}}\) accepts).

Note that \(Q_w\) halts on at most one input, namely \(w\). It halts on input \(w\) exactly if \(P\) halts on input \(w\). Thus \(Q_w \notin E_{\text{Prog}}\) if \(P\) halts on input \(w\), and \(Q_w \in E_{\text{Prog}}\) if \(P\) does not halt on input \(w\). Consequently \(P_{A_{\text{Prog}}}\) decides \(A_{\text{Prog}}\).

\(\square\)

Corollary \(E_{\text{Prog}}\) is not decidable.

Problem 4 \(EQ_P = \{ \langle P_1, P_2 \rangle \mid L(P_1) = L(P_2) \}\).

Claim \(EQ_P\) is reducible to \(E_{\text{Prog}}\).

Proof Given a program \(P_{EQ}\) to decide \(EQ_P\) we need to show how to construct a program \(P_{E_{\text{Prog}}}\) to decide \(E_{\text{Prog}}\). Here is \(P_{E_{\text{Prog}}}\):

- **Step 1** Construct program \(N\) which loops forever on every input.

- **Step 2** Run \(P_{EQ}(\langle P, N \rangle)\) and output its answer.

 Note that \(L(N) = \phi\). \(P_{EQ}\) accepts exactly if \(L(P) = L(N)\), i.e. if \(L(P) = \phi\). But \(L(P) = \phi\) exactly if \(\langle P \rangle \in E_{\text{Prog}}\). Thus \(P_{E_{\text{Prog}}}\) accepts \(E_{\text{Prog}}\).

\(\square\)

Corollary \(EQ_P\) is not decidable.