1. Let \(w \in \{a, b, c\}^* \). Define \(\text{Remove-c}(w) \) to be the string obtained by deleting all instances of the character \(c \) from \(w \). e.g. \(\text{Remove-c}(ab) = ab \), \(\text{Remove-c}(cc) = \epsilon \), \(\text{Remove-c}(abc) = ab \), \(\text{Remove-c}(acacac) = aaa \).

Let \(L \) be a language over the alphabet \(\{a, b, c\} \). Define \(\text{Remove-c}(L) = \{x | x = \text{Remove-c}(w) \text{ for some } w \in L\} \).

a. Suppose that \(L \) is a CFL. Show that \(\text{Remove-c}(L) \) is also a CFL by giving a CFG to generate \(\text{Remove-c}(L) \).

b. Now suppose \(L \) is recognized by a pda \(M \). Give a pda \(\tilde{M} \) to recognize \(\text{Remove-c}(L) \).

Comment: The two parts are equivalent; nonetheless, I am asking for a separate construction for each part.

2. Let \(A \) and \(B \) be CFLs. Show that \(A \cup B \), \(A \circ B \), \(A^* \) are also CFLs, by giving CFGs to generate them.

3.a. Let \(C = \{uav\#xby | u, v, x, y \in \{a, b\}^* \text{ and } (|u| - |v|) = (|x| - |y|)\} \). Give a pda to recognize \(C \) or a CFL to generate \(C \).

b. Let \(D = \{w\#z | w, z \in \{a, b\}^* \text{ and } |w| \neq |z|\} \). Give a pda to recognize \(D \), or a CFG to generate \(D \).

c. Show that \(C \cup D = \{s\#t | s, t \in \{a, b\}^* \text{ and } s \neq t\} \).

4. a. Let \(E = \{a^ib^j | i < j\} \). Give a CFL to generate \(E \).

b. Let \(F = \{a^ib^j | i > 2j\} \). Give a CFL to generate \(F \).

c. Let \(I = \{a^ib^j | j < i < 2j\} \). Give a CFL to generate \(I \).