1. Let \(V = \{ \langle P \rangle \mid P \text{ computes the identity function } P(\langle x \rangle) = x \text{ for all } x \} \).
 Suppose you are given an algorithm \(A_V \) that decides \(V \). Using \(A_V \) as a subroutine, give an algorithm \(A_{\text{prog}} \) to decide \(A_{\text{prog}} \).

2. Let \(W = \{ \langle P \rangle \mid P \text{ halts on input } 0 \text{ and does not halt on input } 1 \} \).
 Suppose you are given an algorithm \(A_W \) that decides \(W \). Using \(A_W \) as a subroutine, give an algorithm \(A_{\text{prog}} \) to decide \(A_{\text{prog}} \).

3. a. Let \(X = \{ \langle P \rangle \mid P \text{ contains a line of code that is not executed on input } 1 \} \).
 Suppose you are given an algorithm \(A_X \) that decides \(X \). Using \(A_X \) as a subroutine, give an algorithm \(A_{\text{prog}} \) to decide \(A_{\text{prog}} \).

 b. Let \(Y = \{ \langle P \rangle \mid P \text{ contains a line of code that is not executed on any input} \} \).
 Suppose you are given an algorithm \(A_Y \) that decides \(Y \). Using \(A_Y \) as a subroutine, give an algorithm \(A_{\text{prog}} \) to decide \(A_{\text{prog}} \).

4. Let \(Z = \{ \langle P \rangle \mid P \text{ contains a variable that is never assigned a value on any input} \} \).
 Suppose you are given an algorithm \(A_Z \) that decides \(Z \). Using \(A_Z \) as a subroutine, give an algorithm \(A_{\text{prog}} \) to decide \(A_{\text{prog}} \), or to decide some other undecidable language encountered in class.