1. Let $G = (V, E)$ be a directed graph with non-negative edge lengths and let s be a designated vertex. Using Dijkstra’s algorithm as a subroutine, give an efficient algorithm to compute for each $v \in V$ the length of a shortest path from s to v and back to s.

2. Suppose that you were given an efficient algorithm for the Hamiltonian Circuit problem. Using it as a subroutine, give an efficient algorithm to solve the Hamiltonian Path problem. Note your algorithm needs to proceed as follows. Given input (G, s, t) to the Hamiltonian Path problem, your algorithm needs to construct a new graph H, then run the Hamiltonian Circuit algorithm on H, and finally take the answer just computed by the Hamiltonian Circuit algorithm and use it to determine the answer to the Hamiltonian Path problem for (G, s, t).

3. The Traveling Salesman problem is the following problem.
Input: A directed graph G with integer edges lengths, and an integer bound b.
Task: Determine whether G has a Hamiltonian Circuit of length at most b.

Suppose that you were given an efficient algorithm for the Traveling Salesman problem. Using it as a subroutine, give an efficient algorithm for the Hamiltonian Circuit problem.

4. Let $\text{INF}_{PDA} = \{ \langle A \rangle \mid A$ is a PDA and $L(A)$ has infinite size $\}$. Show that INF_{PDA} is computable. Your task is to give an algorithm to determine if $L(A)$ has infinite size given input $\langle A \rangle$.

5. 4.19 (Sipser, both editions). For those with the international edition, note that the problem mentions: M is a DFA that accepts w^R whenever it accepts w.
Hint. You need to give an algorithm to recognize this language. You will want to use a reduction, that is a subroutine for a suitable problem for which we have already seen an algorithm. I suggest using the algorithm for EQ_{DFA}, which is the language of pairs of DFAs (M_A, M_B) that accept the same language.