Let $W = \{ \langle P \rangle \mid P \text{ on input 0 eventually halts} \}$.

Claim Given an algorithm A_W to compute (decide) W, there is an algorithm to compute A_{Prog}.

Proof Here is the algorithm deciding A_{Prog}.

On input $\langle P, w \rangle$:

We need to build (compute) a program $Q_{P,w}$ which we then input to the algorithm A_W.

What we want is for $A_W(\langle Q_{P,w} \rangle) = \begin{cases}
\text{"accept"} & \text{if } P \text{ eventually halts on input } w \\
\text{"reject"} & \text{if } P \text{ does not halt on input } w
\end{cases}$

This means that $Q_{P,w}(0)$ halts if P eventually halts on input w and does not halt if P does not halt on input w for any x, and hence it does so for $x = 0$ in particular.

Here is a program $Q_{P,w}$ that meets the above requirement:

On input x:

$Q_{P,w}$ runs P on input w (i.e. $Q_{P,w}$ ignores its input).

Clearly $Q_{P,w}(0)$ halts if P eventually halts on input w and does not halt if P does not halt on input w

for any x, and hence it does so for $x = 0$ in particular.

Thus our algorithm for deciding A_{Prog} proceeds as follows:

1. Form $\langle Q_{P,w} \rangle$, the encoding of program $Q_{P,w}$.
2. Run algorithm A_W on input $\langle Q_{P,w} \rangle$ and use the result of $A_W(\langle Q_{P,w} \rangle)$ as the answer to report.

\[\square \]

Let $x = \{ \langle P \rangle \mid \text{either } P \text{ on input 0 eventually halts, or } P \text{ on input 1 eventually halts, or both} \}$.

Claim Given an algorithm A_X to decide X, there is an algorithm to decide A_{Prog}.
Proof This is very similar to the previous algorithm. Again, we need to build a program $Q'_{P,w}$ with the following characteristics:

\[
A_X((Q'_{P,w})) \text{ halts if } P \text{ eventually halts on input } w \\
\text{and does not halt if } P \text{ does not halt on input } w
\]

This means that

- if P eventually halts on input w: at least one of $Q'_{P,w}((0))$ and $Q'_{P,w}((1))$ halts
- if P does not halt on input w: both $Q'_{P,w}((0))$ and $Q'_{P,w}((1))$ do not halt.

It is easy to check that $Q'_{P,w} = Q_{P,w}$ meets this requirement. Thus we can use the following algorithm to decide A_{prog}.

On input (P, w):
1. Construct the encoding $(Q_{P,w})$.
2. Run $A_X((Q_{P,w}))$ and give its result as the output for the algorithm.

□

Let $Y = \{P \mid$ there is a variable v in P that is never assigned a value when run on input 1 $\}$.

Claim Given an algorithm A_Y to decide Y, there is an algorithm to compute A_{Prog}.

Proof Here is the algorithm to decide A_{Prog}.

On input (P, w):

Our algorithm will need to construct a program $Q''_{P,w}$ which we then input to A_Y. What we want is for:

\[
A_Y((Q''_{P,w})) \text{ halts if } P \text{ eventually halts on input } w \\
\text{and does not halt if } P \text{ does not halt on input } w
\]

This means that:

- If P eventually halts on input w then $Q''_{P,w}$ has a variable that is never assigned a value when run on input 1, and
- if P does not halt on input w then every variable of $Q''_{P,w}$, when run on input 1, is assigned a value.

Let’s try $Q''_{P,w}$ is the program:

On input x:
1. Run $P((w))$
2. For every variable z appearing in P do: $z \leftarrow 0$
3. \(v \leftarrow 1 \), where \(v \) is a variable that does not appear in \(P \)

We see that if \(P \) halts on input \(w \), then every variable appearing in \(Q_{P,w}^{\prime} \) is assigned a value when \(Q_{P,w}^{\prime} \) is run on input \(x = 1 \), while if \(P \) does not halt on input \(w \), at the very least, variable \(v \) in \(Q_{P,w}^{\prime} \) is not assigned a value.

Oops, this is back to front. Unfortunately, this is unavoidable. So let’s change our goal for \(A_Y \).

Let’s require

\[
A_Y(\langle Q_{P,w}^{\prime} \rangle) \text{ does not halt if } P \text{ eventually halts on input } w \\
\text{ and halts if } P \text{ does not halt on input } w
\]

Now, our algorithm for deciding \(A_{\text{Prog}} \) simply reports the opposite answer to \(A_Y(\langle Q_{P,w}^{\prime} \rangle) \).

So the algorithm is the following:

1. Construct the encoding \(\langle Q_{P,w}^{\prime} \rangle \).
2. Run \(A_Y(\langle Q_{P,w}^{\prime} \rangle) \).
3. Report the opposite answer to that given by \(A_Y \) in Step 2.

\(\Box \)