Decidable problems for CFLs.

Richard Cole

November 5, 2007

Problem 1 \(A_{CFG} = \{ < G, w > \mid G \text{ is a CFG which can generate } w \} \).

Claim \(A_{CFG} \) is decidable.

Proof The following procedure decides \(A_{CFG} \).

Step 1 Convert \(G \) to a CNF grammar \(\tilde{G} \), with start symbol \(S \).

Step 2 If \(w = \epsilon \) check if \(S \rightarrow \epsilon \) is a rule of \(\tilde{G} \) and if so accept (output “accept”) and otherwise reject.

Step 3 If \(w \neq \epsilon \), the derivation of \(w \) takes \(2|w| - 1 \) steps. Simply generate, one by one, all possible derivations in \(\tilde{G} \) of length \(2|w| - 1 \). If any of them yield \(w \) then accept; otherwise, reject.

\(\square \)

Problem 2 \(E_{CFG} = \{ < G > \mid G \text{ is a CFG and } L(G) = \phi \} \).

Claim \(E_{CFG} \) is decidable.

Proof Note that \(L(G) \neq \phi \) if and only if \(G \) can generate some string of terminals, or the empty string. We simply determine this property for each variable \(u \) in \(G \): can \(u \) generate a string in \(\Sigma^* \)? This can be done by means of the following marking procedure.

Step 1 Convert the grammar to CNF (this just simplifies the rest of the description).

Step 2 Mark each variable \(A \) for which there is a rule \(A \rightarrow a \) or \(A \rightarrow \epsilon \) (the latter could only apply to \(S \), the start variable).

Step 3 Iteratively, mark each variable \(A \) such that there is a rule \(A \rightarrow BC \) and \(B \) and \(C \) are already marked. (We leave an efficient implementation to the reader). Stop when no more variables can be marked.

Step 4 Accept if \(S \) is marked and reject otherwise.

\(\square \)