Honors Algorithms
G22.3520-001 Fall 2007

Lecture 7
Lower bounds for comparison-based sorting

Consider only algorithms that make comparisons “\(a_i \leq a_j \)”

Formally: model such an algorithm as a decision tree:

- each internal node labeled by a pair of indices \((i, j)\), meaning compare \(a_i \) with \(a_j \)
 - two children: left branch taken if \(a_i \leq a_j \), right branch taken if \(a_i > a_j \)
- each leaf is labeled by a permutation on \(\{1, \ldots, n\} \), indicating the sorted order
- Cost = height of tree
Example: Merge Sort on $n = 3$
Theorem. Any decision tree that correctly sorts \(n \) items must have height \(\Omega(n \log n) \)

Proof. All \(n! \) permutations must appear as leaves. Therefore, if \(h = \text{height of tree} \), then

\[
2^h \geq n! \implies h \geq \log_2 n!.
\]

Claim. \(\log_2 n! \sim n \log_2 n \)

Detour: Approximating sums by integrals. If \(f \) is continuous and monotone on \([a, b] \),

\[
m := \min(f(a), f(b)), \text{ and } M := \max(f(a), f(b)):
\]

\[
\int_a^b f(x)dx + m \leq \sum_{i=a}^{b} f(i) \leq \int_a^b f(x)dx + M
\]
Proof of claim.

We have

\[\log_2 n! = \sum_{i=1}^{n} \log_2 i \]

and

\[\int_{1}^{n} \log_2 x \, dx \leq \sum_{i=1}^{n} \log_2 i \leq \int_{1}^{n} \log_2 x \, dx + \log_2 n \]

Moreover,

\[\int_{1}^{n} \log_2 x \, dx = n \log_2 n + O(n) \]

QED
Bucket Sort

Let $\Delta = \{0, \ldots, m - 1\}$

input: $a_1, \ldots, a_n \in \Delta$

initialize $T[j] \leftarrow \text{“empty list”}$ (for $j = 0 \ldots m - 1$)

for $i \leftarrow 1$ to n do

$T[a_i] \leftarrow T[a_i] \parallel a_i$

output $T[0] \parallel T[1] \parallel \cdots \parallel T[m - 1]$

Running time: $O(m + n)$

Notes:

• constant-time init trick does not help here

• this is a “stable” sort
Lexicographic Sort (1)

input: $A_1, \ldots, A_n \in \Delta^t$
for $j \leftarrow t$ down to 1 do
 bucket sort the A_i’s using jth entry as the "sort key"

Correctness: follows from stability of Bucket Sort
Running time: $O(nt + mt)$

Improvements:
- reduce running time to $O(nt + m)$
- handle variable length inputs
Lexicographic Sort (2)

Input: \(A_1, \ldots, A_n \in \Delta^* \), where \(t_i := |A_i| > 0 \),
\(t_{\text{max}} := \max \{ t_i \} \), \(N := \sum_i t_i \)

Step 1: for \(j = 1 \ldots t_{\text{max}} \), create a list \(L[j] \) of all \(A_i \)'s of length \(j \)

Step 2: create a list of \(N \) pairs \((j, a_{ij})\), where \(a_{ij} \) is the \(j \)th component of \(A_i \) \([\text{Time} = O(N)]\)

Step 3: sort pairs lexicographically — Bucket Sort twice, first in the second component (\(m \) buckets), and then in the first component (\(t_{\text{max}} \) buckets) \([\text{Time} = O(N + m)]\)
Step 4: run lex sort as before, except that we use the data from step 3 to ignore empty buckets

\[
L \leftarrow \text{empty list}
\]

for \(j \leftarrow t_{\text{max}} \) down to 1 do

\[
L \leftarrow L[j] \parallel L
\]

bucket sort \(L \) using \(j \)th component as the “sort key”, ignoring empty buckets

Running Time Analysis

The running time of loop iteration \(j \) is proportional to the number of pairs \((j, a_{ij})\)

The total cost is proportional to the total number of pairs, which is \(N \)
Putting it all together: total running time is \(O(N + m) \)

For constant \(m \), or \(m = O(N) \), this is linear in the input size

Does not contradict the sorting lower bound
Divide and Conquer: a (somewhat) general theorem

The setup: a recursive algorithm that on inputs of size $n \geq n_0$, recursively solves

- $\leq a$ smaller sub-problems,
- each of size $\leq n/b + c$,
- with a “local” running time $\leq d n^e$

where n_0, a, b, c, d, e are constants
Recursion tree analysis

At level 1, size $\leq n/b + c$

At level 2, size $\leq n/b^2 + c/b + c$

\[\ldots \]

At level j,

$$\text{size} \leq n/b^j + c/b^{j-1} + \cdots + c/b + c$$

$$\leq n/b^j + C_1,$$

where $C_1 := c/(1 - 1/b)$

At level j, there are $\leq a^j$ nodes
Set \(k := \lceil \log_b n \rceil \), so \(n \leq b^k < bn \)

At level \(k \), all sizes are \(\leq 1 + C_1 \), and we can ignore all nodes at levels \(k + 1, k + 2, \ldots \) (their contribution to the total cost is at most a constant times the sum of costs at level \(k \))

Let \(w = \text{sum of costs at levels } 0, \ldots, k \)

For each \(j = 0 \ldots k \), sum of costs at level \(j \) is

\[
\leq a^j \cdot d(n/b^j + C_1)^e \\
\leq C_2 a^j (n/b^j)^e \\
= C_2 n^e (a/b^e)^j
\]
Therefore,

\[w \leq C_2 n^e \sum_{j=0}^{k} \alpha^j, \]

where \(\alpha := \alpha/b^e \)

Case 1: \(\alpha < 1 \)

\[\sum_{j=0}^{\infty} \alpha^j = 1/(1 - \alpha) \implies w \leq (C_2/(1 - \alpha))n^e \]

Total running time = \(O(n^e) \)

Case 2: \(\alpha = 1 \)

\[\sum_{j=0}^{k} \alpha^j = (k + 1) \implies w \leq C_2(k + 1)n^e \]

Total running time = \(O(n^e \log n) \)
Case 3: $\alpha > 1$

$$\sum_{j=0}^{k} \alpha^j = \frac{\alpha^{k+1} - 1}{\alpha - 1}$$

and so

$$w \leq C_3 n^e \alpha^k = C_3 n^e \alpha^k / (b^k)^e \leq C_3 a^k$$

$$\leq C_3 a^{\log_b n + 1} = C_3 a \cdot a^{\log_b n}$$

$$= C_3 a \cdot b^{\log_b a \cdot \log_b n}$$

$$= C_3 a \cdot n^{\log_b a}$$

Total running time $= O(n^{\log_b a})$
Summarizing — the “Master Theorem”

Let $f := \log_b a$

Case 1: $e > f \implies O(n^e)$

Case 2: $e = f \implies O(n^e \log n)$

Case 3: $e < f \implies O(n^f)$
Application: faster multiplication

Problem: multiply two n-bit integers

An “n-bit integer” is an integer a such that $0 \leq a < 2^n$

An n-bit integer can be represented using an array of n bits (although in practice, one packs several bits into a “word”)

The sum of two n-bit integers is an $(n + 1)$-bit integer, and can be computed in time $O(n)$

The product of two n-bit integers is a $(2n)$-bit integer, and can be computed in time $O(n^2)$
Karatsuba’s multiplication algorithm

Input: two \(n \)-bit integers, \(a \) and \(b \)

If \(n \) is “very small”, use the naive algorithm

Otherwise, divide each number into two pieces:

\[
a = a_1 2^k + a_0
\]

\[
b = b_1 2^k + b_0,
\]

where \(k := \lfloor n/2 \rfloor \)

\[
\begin{array}{c|c|c}
\text{a:} & a_1 & a_0 \\
\text{b:} & b_1 & b_0 \\
\end{array}
\]
\[ab = a_1 b_1 2^{2k} + (a_1 b_0 + a_0 b_1) 2^k + a_0 b_0 \]
If we recursively compute the four sub-products $a_1 b_1, a_1 b_0, a_0 b_1, a_0 b_0$, we get another $O(n^2)$ algorithm

- $e = 1, f = \log_2 4 = 2$, Case 3 of Master Theorem

Better idea:

- Compute $A \leftarrow a_1 + a_0, B \leftarrow b_1 + b_0$
- Recursively compute three products:
 $H \leftarrow a_1 b_1, L \leftarrow a_0 b_0, F \leftarrow AB$
- Observe: $F = a_1 b_1 + a_1 b_0 + a_0 b_1 + a_0 b_0$
- Thus, we can compute $M \leftarrow F - (H + L)$, which is $a_1 b_0 + a_0 b_1$, and $P \leftarrow H2^{2k} + M2^k + L$, which is ab
Now apply Master Theorem: \(e = 1, \quad f = \log_2 3 \approx 1.585 \)

Case 3: running time is \(O(n^{\log_2 3}) \)

Notes:

- Not the fastest method: using the Fast Fourier Transform, one can multiply two \(n \)-bit integers in time \(O(n \log n \log \log \log n) \)
- For \(n \) (roughly) in the range 500–10,000, Karatsuba is the fastest
- You use it every time you buy something from amazon.com, or use ssh — it’s used to implement public-key cryptosystems