2-3 Trees: Join and Split

Join(T_1, T_2) joins two 2-3 trees in time $O(\log n)$
Assume $\max(T_1) < \min(T_2)$
Assume T_i has height h_i for $i = 1, 2$
Case 1: $h_1 = h_2$

![Diagram of 2-3 trees joining with a new root](image)
Case 2: $h_1 < h_2$

- Attach ν as the left-most child of p
- If p now has 4 children, we split p, and proceed up the tree as in Insert
- Time: $O(h_2 - h_1) = O(\log n)$

Case 3: $h_1 > h_2$ — similar
Split(T, x) \implies ($T_1 [\leq x], T_2 [> x]$)
Observations:

- Initially: at most 2 trees of any given height — except there may be 3 of height 0

- Let T_1, T_2 have heights h_1, h_2, where $h_1 \geq h_2$

 Then $\text{Join}(T_1, T_2)$ takes time $O(h_1 - h_2 + 1)$, and produces a tree of height h_1 or $h_1 + 1$

- Let T_1, T_2, T_3 have heights h_1, h_2, h_3, where $h_1 = h_2 \geq h_3$

 Then $\text{Join}(T_1, \text{Join}(T_2, T_3))$ takes time $O(h_2 - h_3 + 1)$, and produces a tree of height h_1 or $h_1 + 1$
If the distinct heights of the trees to merge are
\[h_1 > h_2 > \cdots > h_k, \]
then the total cost is \(O(t) \), where
\[
t \leq (h_1 - h_2 + 1) + (h_2 - h_3 + 1) + \cdots + (h_{k-1} - h_k + 1) \\
= h_1 - h_k + k - 1 \\
\leq 2h,
\]
where \(h \) is the height of the original tree
Conclusion: total time for Split is \(O(\log n) \)
Augmenting 2-3 trees

Examples

Store # of items in subtree at each internal node

Queries:

• What is the kth smallest item?
• How many items are $\leq x$?
Items may be marked with an attribute, say, “active”/“inactive”

Store a count of active items in subtree at each internal node

Queries:

• What is the kth smallest active item?
• How many active items are $\leq x$?
• Attribute flipping . . .
• Operation $\text{Flip}(x, y)$ flips all attribute bits of items in the range
• Assume attributes are bits
• Store an XOR-bit at each internal node
 – “effective” value of the attribute is the XOR of all bits on path from root to leaf
• To perform $\text{Flip}(x, y)$:
 – trace paths e, f to x, y
 – flip bits at x, y, and all roots of “internal” subtrees
Example:
Priority Queues

Priority Queue operations:

- Insert
- Delete Min

Recall basic “heap” data structure

Structure: “nearly” perfect binary tree

Heap condition: $val(v) \geq val(parent(v))$
Insert:

```
1
5 3
9 8 6 6
9 7 9 10 12 8
2
3
2
```

``float up``

Delete Min:

```
1
5 3
9 8 6 6
9 7 10 12
1
9
3
6
9
```

``sink down``
Insert and Delete Min: time $O(\log n)$

Array layout (an optimization)

If array is indexed from 1:

- $LeftChild(i) = 2i$
- $RightChild(i) = 2i + 1$
- $parent(i) = \lfloor i/2 \rfloor$
Building a heap from scratch in time $O(n)$

- Put all items in the array
- Let h be the height of the (implicit) tree
- Process nodes at levels $h - 1, h - 2, \ldots, 0$:
 - let the value at node v “sink” to its correct position in the subtree rooted at v (as in Delete Min)
- After processing level j, each node at level j is the root of a heap
- Cost for level j: $O((h - j)2^j)$
 - 2^j nodes at level j, each costs time $O(h - j)$ to process
Total Cost is $O(t)$, where

$$t \leq 1 \cdot 2^{h-1} + 2 \cdot 2^{h-2} + 3 \cdot 2^{h-3} + \cdots + h \cdot 2^0$$

$$= 2^h \sum_{i=1}^{h} \frac{i}{2^i}$$

Now, $h = \lfloor \log_2 n \rfloor$, so $2^h \leq n$

Also, $\sum_{i=1}^{\infty} i/2^i = 2$:

\[
\begin{array}{cccc}
1/2 \\
1/4 & 1/4 \\
1/8 & 1/8 & 1/8 \\
\vdots & \vdots & \vdots \\
1 & 1/2 & 1/4 & \ldots
\end{array}
\]

\[\therefore t \leq 2n\]
Mergeable Priority Queues

Operations:
- Insert
- Delete Min
- Merge two queues

Using heaps:
- need to re-build — time $O(n)$

Using 2-3 trees:
- Can support all 3 operations in time $O(\log n)$
Mergeable Priority Queues using 2-3 trees

- Same tree structure as ordinary 2-3 trees
- Items stored at leaves, but
 - duplicates allowed
 - values not in any particular order
- Internal nodes contain “min values” as guides
- Insert: just make a new leaf (anywhere), and update guides
- Delete Min: follow guides to find min, delete, and update guides
- Merge: use Join procedure, and update guides
This data structure supports Insert, Delete Min, and Merge, in time $O(\log n)$.

It does not directly support Search and Delete.

Implementation notes for both heaps and 2-3 trees:

- data structure stores pointers to objects
- objects may contain a “hook” into the data structure
Using “hooks,” we can also implement operation Adjust Value

- heaps: change value and “float up” or “sink down”
 Time: $O(\log n)$

- 2-3 trees: change value and update guides
 Time: $O(\log n)$