The constant-time array initialization trick

Goals:

- an array A indexed by $0, \ldots, m - 1$
- constant time access
- space $O(m)$
- \textit{constant time initialization} (to some default value)
Idea: main array is A, two auxiliary arrays $When$ and $Which$, and a time counter t

If $A[i]$ is first assigned to at time t:

$$When[i] = t, \quad Which[t] = i$$

$Init()$: $t \leftarrow 0$

$Valid(i)$:

$$t' \leftarrow When[i]$$

return $0 \leq t' < t$ and $Which[t'] = i$

$Access(i)$:

if $Valid(i)$ then return $A[i]$

else return default value

$Assign(i, v)$:

if not $Valid(i)$ then

$$When[i] \leftarrow t, \quad Which[t] \leftarrow i, \quad t \leftarrow t + 1$$

$$A[i] \leftarrow v$$
Search tries: dictionary for strings

dictionary for strings over finite alphabet Δ

assume $\Delta = \{0, \ldots, m - 1\}$

maintain an m-ary tree, where the items in the dictionary determine the paths in the tree
Example

Assume $m = 2$

Data:

\[
\begin{array}{c}
00 \\
01111 \\
011110 \\
0111111 \\
11101 \\
\end{array}
\]
Analysis

Assume

- each node is represented as an array of m pointers
- n items in the dictionary
- $N = \text{sum of lengths of all items}$

Time for lookup: $O(\text{length of item})$

Space: $O(Nm)$

- reduce to $O(N + nm)$ by compressing “chains”
- or even to $O(N + n)$ by using linked lists — drawback: slows down lookups
Example: chain compression

Data:

00
01111
011110
0111111
11101
Why chain compression works

Fact: if T is a tree with n leaves, and every internal node has degree > 1, then T has at most $n - 1$ internal nodes

Time for insertion: $O(\text{length of item } + m)$

- $O(m)$ time needed to initialize a single array of m pointers
- this assumes chain compression
- we can even get rid of the $O(m)$ term, using the “constant time array initialization trick”

Time for deletion: similar to insertion
2-3 trees: a dictionary for general data

Assume data items are totally ordered (<, >, =)

Assume n items in the dictionary

Structure: a tree

- Data stored only at leaves (no duplicates)
- All leaves at the same level, in sorted order
- Each internal node:
 - has either 2 or 3 children
 - has a “guide”: the maximum data item in its subtree

Height of tree is $O(\log n)$
Example
Search(x): use guides

Insert(x): Search for x, and if it should belong under p:

add x as a child of p (if not already present)

if p now has 4 children:

- split p into two two nodes, \(p_1 \) and \(p_2 \), each with two children
- process p’s parent in the same way
- Special case: no parent — create new root, increasing height of tree by 1

Also need to update “guides” — easy

Time = \(O(\text{height}) = O(\log n) \)
Case when p ends up with 4 children

\[p \]
\[w \quad x \quad y \quad z \]

\[p \]
\[w \quad y \quad z \]

\[p_1 \]
\[w \quad x \]

\[p_2 \]
\[y \quad z \]
Delete(x): Search for x, and if found under p:

- remove x

 if p now only has one child:

 - if p is the root: delete p (height decreases by 1)
 - if one of p’s siblings has 3 children: borrow one
 - if none of p’s siblings has 3 children:
 - one sibling q must have 2 children
 - give p’s only child to q
 - delete p
 - process p’s parent
Easy case: borrow from sibling
Harder case: give away only child
2-3 trees: summary

Assume n items in dictionary

Running time for lookup, insert, delete:

- $O(\log n)$ comparisons, plus $O(\log n)$ overhead

Space: $O(n)$ pointers
Dictionaries for strings: a comparison

hash tables, search tries, or balanced trees (e.g., 2-3 trees)?

Assume \(n \) strings of length \(t \) over an \(m \) letter alphabet

Time per lookup:

- tries and hash tables: \(O(t) \)

which is faster depends on the relative costs of memory access (tries will jump through \(t \) pointers) and hash function evaluation

tries may be faster for “misses”
Time per lookup (cont’d):

- balanced trees: $O(t \log n) — O(\log n)$ comparisons, each takes time $O(t)$

Space:

- hash tables and balanced trees very space efficient
- tries can be real space hogs

Support for other operations:

- tries support fast prefix matching
- balanced trees support fast in-order traversal (and other things)
- hash tables: nothing
Ternary Search Trees
the best of all possible worlds?

Reference: Sedgewick & Bentley
http://www.ddj.com/184410528

- Each internal node has 3 children and a “guide” that consists of a single letter in the alphabet
- To look for a string, compare current letter of string to guide of current node
 - update current node: branch left/down/right according to <, =, >
 - update current letter: advance 1 pos if =
3. The Algorithms

Just as Quicksort is isomorphic to binary search trees, so (most-significant-digit) radix sorting to the tree in Figure 1 was constructed by this criterion. Bentley and Saxe present the structure as a solution to a

This computing the value low Hoare's [9] solution finally as sorting

the significant partitioning Ternary each component gives

vector in-place, this pseudocode provides

ternary structures in-place, and references by

a partitioning to a median input

s,\ s, I=, II=, \ldots\) value for

111).

These elements are identical (most-significant-digit) to this algorithm. The binary search tree in Figure 1 was constructed by this criterion. Bentley and Saxe present the structure as a solution to a

as at be by he in is it of on or to

Figure 2. A ternary search tree for 12 two-letter words
Running time for a lookup: $O(t + \log n)$

- Assumes length of string is t, dictionary contains n items, and that tree is well balanced

- Idea: each iteration of lookup step either
 - decreases length of string by 1, or
 - cuts number of items in half

Space: $O(n)$ (assuming path compression)

Support for other operations:

- prefix matching
- in-order traversal
- others ...