Honors Algorithms
G22.3520-001 Fall 2007

Lecture 3
Perfect Hashing

We have n fixed items a_1, \ldots, a_n

We want to be able to build a table with these items, so that lookups take constant time — in the worst case

Basic strategy: universal hashing

$m = \# \text{ slots}$

We don’t want any collisions
\[
\Pr[\text{collision}] \leq \sum_{i=1}^{n} \sum_{j=1}^{i-1} \Pr[h_R(a_i) = h_R(a_j)] \\
\leq \frac{n(n-1)}{2m}
\]

Assume \(m \geq n(n - 1) \), so that we get a collision with probability \(\leq 1/2 \)

Strategy:

repeat

choose a random hash key
hash \(a_1, \ldots, a_n \) using this key
until no collisions
Good news: each iteration succeeds with probability $\geq \frac{1}{2}$

\therefore expected # of iterations ≤ 2

Bad news: *HUGE* table

A better approach: two levels of universal hashing

- Level 1 segregates items so that not too many go into any one slot
- Level 2 applies the basic strategy to each Level-1 slot
Suppose there are $m \geq 2n$ Level-1 slots

Step 1:

repeat
 choose a random hash key R
 hash a_1, \ldots, a_n using R
 let $L_s := \# \text{ items in slot } s$
 let $V' := \sum_s L_s(L_s - 1) = \sum_s L_s^2 - n$
until $V' \leq n$

Step 2:

For each Level-1 slot s, use Basic Strategy to hash all items in slot s into a hash table with (at least) $L_s(L_s - 1)$ slots
Analysis

Tool: Markov’s inequality

Let X be a random variable taking non-negative values

Let $\mu := E[X]$

For all $t > 0$: $\Pr[X \geq t] \leq \mu/t$

Set $t = 2\mu$: $\Pr[X \geq 2\mu] \leq 1/2$

Step 1:

Lecture 1: $E[V'] \leq n^2/m \leq n/2$

Markov: $\Pr[V' \geq n] \leq 1/2$

\therefore expected # of iterations ≤ 2
Analysis (cont’d)

Step 2:

For each slot s, we build a sub-table with (at least) $L_s(L_s - 1)$ slots

∴ we can quickly find a good key for this sub-table

Summary:

- Total expected running time $= O(n)$
- Total size of data structure $= O(n)$
Another hash application: fast pattern matching

Problem: Given strings \(a = a_1 \cdots a_n \), and
\[b = b_1 \cdots b_t \], test if \(b \) is a substring of \(a \)

Naive algorithm: time \(O(nt) \)

Faster algorithms: time \(O(n) \) (assume \(t \leq n \))

- A simple, randomized algorithm (Karp, Rabin)
- A trickier deterministic algorithm (Knuth, Morris, Pratt)
The Karp/Rabin Algorithm (a variant)

Let \(\{h_k\}_{k \in \mathcal{K}} \) be an \(\epsilon \)-universal family of hash functions on strings of length \(t \)

Algorithm:

1. choose a random key \(k \)
2. \(s \leftarrow h_k(b) \)
3. for \(i \leftarrow 1 \) to \(n - t + 1 \) do
 1. \(s_i \leftarrow h_k(a_i \cdots a_{i+t-1}) \)
 2. if \(s = s_i \) then
 1. if \(b = a_i \cdots a_{i+t-1} \) then
 return \textit{match}
 end
 end
end
4. return \textit{no match}
Running time analysis: two factors

- time to compute hash function
- expected time spent processing “false positives”: $O(\varepsilon \cdot n \cdot t)$

Use “polynomial evaluation” hash:

- view a_i’s, b_j’s, k as elements of \mathbb{Z}_p, where p is prime
- $h_k(a_1 \cdots a_t) = a_1k^{t-1} + \cdots + a_t$
- $\varepsilon = t/p$
- time to evaluate each h_k: $O(t)$ naively, but we can do better
Computing a “Rolling Hash”

\[a_1 k^{t-1} + a_2 k^{t-2} + \cdots + a_t - a_1 k^{t-1} \]

\[= a_2 k^{t-2} + \cdots + a_t \]

\[\times k \]

\[= a_2 k^{t-1} + \cdots + a_t k + a_{t+1} \]
Karp/Rabin: conclusions

Assume p is near machine word size (e.g., 2^{32})

Assume arithmetic in \mathbb{Z}_p takes time $O(1)$

Time to compute hashes: $O(n)$

Expected time to process false positives:
\[O(nt^2/p), \text{ which is } O(n) \text{ for “reasonable” } t \]
\[(\text{e.g., } t < 2^{16}) \]
Beyond Pairwise Independence: Uniform Hashing Assumption

let $\mathcal{H} = \{h_k\}_{k \in \mathcal{K}}$ be a family of hash functions, $h_k : \mathcal{U} \rightarrow \{0, \ldots, m - 1\}$

we want to hash data sets of size (up to) n

let R be uniformly distributed over \mathcal{K}

Uniform Hashing Assumption:

- each $h_R(a)$ is uniformly distributed over $\{0, \ldots, m - 1\}$
- the family $\{h_R(a)\}_{a \in \mathcal{U}}$ is n-wise independent
A very strong assumption
Hard to achieve in practice
Often the assumption is just heuristically applied
 “off the shelf” cryptographic hash functions
The Max Load — Revisited

Suppose we hash \(n \) items into \(n \) slots

Let \(M = \text{max} \ # \text{ of data items that hash to any one slot} \)

Theorem. Under the Uniform Hashing Assumption,

\[
E[M] = O\left(\frac{\log n}{\log \log n}\right).
\]

Note: compare to \(O(\sqrt{n}) \) for pairwise independent hashing
General Fact: let X be a random variable that takes only non-negative integer values

Then $E[X] = \sum_{j \geq 1} \Pr[X \geq j]$

Proof of Theorem.

Claim 1: for $j = 1, \ldots, n$: $\Pr[M \geq j] \leq n/j$

Proof: We are hashing a_1, \ldots, a_n

$M \geq j$ iff for some subset of indices $\{i_1, \ldots, i_j\}$, the items a_{i_1}, \ldots, a_{i_j} hash to the same slot

For any fixed subset, this happens with probability $1/n^{j-1}$:

- a_{i_1} can hash into any slot s
- the other $j - 1$ must hash into slot s
Summing over all subsets of size j:

$$\Pr[M \geq j] \leq \binom{n}{j} \cdot \frac{1}{n^{j-1}}$$

$$= \frac{n(n-1) \cdots (n-j+1)}{j!} \cdot \frac{1}{n^{j-1}}$$

$$\leq \frac{n}{j!}$$

That proves the claim
Define $f(n) := \text{least } j \text{ such that } n/j! \leq 1$

Claim 2: $f(n) = O(\log n / \log \log n)$

Sketch: we want $\log n \leq \log j! \approx j \log j$

This happens when j is roughly $\log n / \log \log n$

We have

$$E[M] = \sum_{j \geq 1} \Pr[M \geq j]$$

$$= \sum_{j \leq f(n)} \Pr[M \geq j] + \sum_{j > f(n)} \Pr[M \geq j]$$

$$\leq f(n) + \sum_{j > f(n)} \frac{n}{j!} \leq f(n) + \sum_{i \geq 1} 1/2^i$$

$$= f(n) + 1 = O(\log n / \log \log n) \quad \text{QED}$$
Bloom Filters

A fixed set \(S = \{a_1, \ldots, a_n\} \subseteq \mathcal{U} \)

Data structure: an array of \(m \) bits

Use \(\ell \) hash functions \(h_1, \ldots, h_\ell \)

set bits \(h_i(a_j) \) for \(i = 1, \ldots, \ell, \ j = 1, \ldots, n \)

to test if \(a \in \mathcal{U} \):

- test if bits \(h_1(a), \ldots, h_\ell(a) \) are all set

Pros: very compact (just a bit vector – no pointer, no data)

Cons: “false positives”
Analysis: \(a \notin S \) is a false positive if
\[
\forall i' \exists j, i : h_{i'}(a) = h_i(a_j)
\]

For any fixed \(i', j, i \):
\[
\Pr[h_{i'}(a) = h_i(a_j)] = 1/m
\]

For any fixed \(i' \):
\[
\Pr \left[\forall j, i : h_{i'}(a) \neq h_i(a_j) \right] = (1 - 1/m)^{n\ell}
\]

False positive rate:
\[
\Pr \left[\forall i' \exists j, i : h_{i'}(a) = h_i(a_j) \right] = \left(1 - (1 - 1/m)^{n\ell} \right)^\ell
\]
Use the approximation $1 + x \approx e^x$

False positive rate:

$\left(1 - (1 - 1/m)^{n\ell}\right)^\ell \approx (1 - e^{-\ell n/m})^\ell$

For fixed m/n, this is minimized at $\ell = (m/n) \log 2$

For this ℓ, false positive rate $\approx (0.62)^{m/n}$

Example: $m/n = 10$

<table>
<thead>
<tr>
<th>ℓ</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>.0952</td>
<td>.0329</td>
<td>.0174</td>
<td>.0118</td>
<td>.00943</td>
<td>.00844</td>
<td>.00819</td>
<td>.00846</td>
</tr>
</tbody>
</table>

We get $< 1\%$ false positive rate with 10 bits per dictionary entry
Bloom Filters: properties and applications

Can add items to dictionary, but not delete

can compute union and set difference of Bloom filters (bit-wise OR)

Reduce workload on databases,

Minimize access to large/slow memory

Privacy: can distribute/publish a Bloom filter, without explicitly revealing the items in the dictionary