Decidability

• Recall: Random Access Machine (RAM)
 ◦ program is a finite sequence of instructions
 ◦ input and output is a bit string, written on special tapes
 ◦ random access to an unbounded number of memory cells
• We say that a RAM M halts on input $x \in \{0, 1\}^*$ if given x as input, M halts after a finite number of steps
 ◦ no restrictions are made on the running time, the number of memory cells used, or the sizes of the numbers stored in memory
• We stay that a RAM M halts on all inputs if it halts on all inputs $x \in \{0, 1\}^*$
• We say a function $f : \{0, 1\}^* \to \{0, 1\}^*$ is *computable* if there is a RAM that computes f (in particular, M must halt on all inputs)

• We say a language L is *decidable* if its characteristic function is computable

 ◦ Analogous to P

• A RAM M is called a *decider* if it halts and outputs 0 or 1 on all inputs

• If M is a decider, then $L(M)$ denotes the language whose characteristic function is computed by M, and we say M *decides* $L(M)$, and $L(M)$ is the *language decided by M*

• Simple fact: L is decidable $\iff \overline{L}$ is decidable
We say that a language L is *recursively enumerable* if there is a decidable language L' such that

$$\forall x \in \{0, 1\}^* : \quad x \in L \iff \exists w \in \{0, 1\}^* : \langle x, w \rangle \in L'$$

- Sipser: Turing recognizable
- Analogous to NP
Theorem:
• a language L is decidable \iff both L and \overline{L} are recursively enumerable

Proof:
• \Rightarrow: clear
• \Leftarrow:
 ◦ let W_1 be the set of witnesses for $x \in L$, and let W_2 be the set of witnesses for $x \in \overline{L}$
 ◦ enumerate all strings $\{0, 1\}^*$, testing for membership in W_1 and W_2
 ◦ eventually, one string will be in either W_1 or W_2
Recursive enumerability: other characterizations

Some terminology:

• We say \(M \) accepts a string \(x \) if \(M \) halts and outputs 1 on input \(x \)

• We say \(M \) recognizes a language \(L \) if:

 ◦ \(x \in L \implies M \) accepts \(x \)

 ◦ \(x \notin L \implies M \) does not accept \(x \) (it may halt and output something \(\neq 1 \), or it may go into an infinite loop)

Extend notation: \(L(M) = \{x : M \) accepts \(x \}\)
Theorem:
• L is recursively enumerable \iff some RAM recognizes L

Proof:
• \Rightarrow build a RAM that enumerates all possible witness, testing each
• \Leftarrow: the witness is a bound on the running time
Enumerators:

- An extended RAM is one that may write 0, 1, or # to its output tape.
- We say an extended RAM M enumerates L, if the following holds:
 - if we allow M to run (with no input) forever, it writes to its output tape $x_1 \# x_2 \# x_3 \# \cdots$, where $L = \{x_i : i = 1, 2, 3, \ldots\}$.
Theorem:

• L is recursively enumerable \iff some RAM enumerates L

Proof:

• \Rightarrow: build a RAM that enumerates all pairs (x, w), and outputs $x\#$ if w is a witness for x

• \Leftarrow: the witness is a bound on the running time needed to generate x in the output stream
Existence of undecidable languages:
- There are only countably many RAM’s
- There are uncountably many languages
- \(\therefore \) undecidable languages exist

A specific undecidable language:

\[
A_{\text{RAM}} := \left\{ \langle M, x \rangle : M \text{ is a RAM,} \right. \\
\left. x \in \{0, 1\}^*, \\
M \text{ accepts } x \right\}
\]
Theorem: A_{RAM} is undecidable

Proof:

• Suppose it were decidable
• Let H be a RAM that decides it:
 \[H(\langle M, x \rangle) = \begin{cases}
1 & \text{if } M \text{ accepts } x \\
0 & \text{otherwise}
\end{cases} \]
• Construct a new RAM D as follows:
 on input $\langle M \rangle$:
 output $1 - H(\langle M, \langle M \rangle \rangle)$

• D always halts and always outputs 0 or 1
• $D(\langle D \rangle) = 1 - H(\langle D, \langle D \rangle \rangle) = 1 - D(\langle D \rangle)$
Theorem: A_{RAM} is recursively enumerable

Proof:

• A “witness” w for $\langle M, x \rangle$ is a bound on the running time of M on input x

• To verify a witness w
 ○ just run M on input x for up to w steps
 ○ if M halts and outputs 1 within w steps, then output 1, and output 0 otherwise

Corollary: $\overline{A}_{\text{RAM}}$ is not recursively enumerable
Reducibility

Reductions:

• Suppose L_1, L_2 are languages

• We say L_1 is reducible to L_2, if there is a computable function $f : \{0, 1\}^* \rightarrow \{0, 1\}^*$, such that $x \in L_1 \iff f(x) \in L_2$

• Notation: $L_1 \leq L_2$

Simple facts:

• If $L_1 \leq L_2$ and L_2 is decidable, then L_1 is decidable

• If $L_1 \leq L_2$ and L_1 is undecidable, then L_2 is undecidable
More undecidable problems

Theorem:

• The language

\[\text{HALT}_{\text{RAM}} := \{ \langle M, x \rangle : \text{RAM } M \text{ halts on input } x \} \]

is undecidable

Proof:

• Reduction: \(A_{\text{RAM}} \leq \text{HALT}_{\text{RAM}} \)
• Map \(\langle M, x \rangle \) to \(\langle M', x \rangle \), where \(M' \) is the RAM:

 on input \(x' \):

 run \(M \) on input \(x' \) until it halts

 if and when \(M \) halts with an output \(y \):

 if \(y = 1 \)

 then halt

 else go into an infinite loop
Theorem:

- The language

\[E_{\text{RAM}} := \{ \langle M \rangle : M \text{ is a RAM and } L(M) = \emptyset \} \]

is undecidable

Proof:

- Reduction: \(A_{\text{RAM}} \leq \overline{E}_{\text{RAM}} \)

- Map \(\langle M, x \rangle \) to \(\langle M' \rangle \), where \(M' \) is the RAM:

 on input \(x' \):

 if \(x' = x \) // \(x \) is “hardwired” into \(M' \)

 then run \(M \) on input \(x \)

 else output 0 and halt

- Verify: \(M \) accepts \(x \) \(\iff \) \(L(M') \neq \emptyset \)
Theorem:

- The language

\[EQ_{\text{RAM}} := \{ \langle M_1, M_2 \rangle : M_1, M_2 \text{ are RAM's and } L(M_1) = L(M_2) \} \]

is undecidable

Proof:

- Reduction: \(E_{\text{RAM}} \leq EQ_{\text{RAM}} \)
- Map \(\langle M \rangle \) to \(\langle M, M_0 \rangle \), where \(M_0 \) is the RAM:
 - on input \(x \):
 - output 0 and halt
Theorem:

- The language

\[REG_{\text{RAM}} := \{ \langle M \rangle : L(M) \text{ is regular} \} \]

is undecidable

Proof:

- Reduction: \(A_{\text{RAM}} \leq REG_{\text{RAM}} \)
- Map \(\langle M, x \rangle \) to \(\langle M' \rangle \), where \(M' \) is the RAM:

 on input \(x' \):

 if \(x' \in \{0^n1^n : n \geq 0\} \)

 then output 1 and halt

 else run \(M \) on input \(x \)

- Observe: if \(M \) accepts \(x \), then \(L(M') = \{0, 1\}^* \)

 otherwise, \(L(M') = \{0^n1^n\} \)
Theorem (Rice’s Theorem):

• Any non-trivial property of the language accepted by a RAM is undecidable

• More precisely: let P be a language consisting of RAM descriptions $\langle M \rangle$, such that
 - P is non-trivial: P contains some, but not all descriptions
 - membership in P depends only on the language accepted by the RAM:
 \[L(M_1) = L(M_2) \Rightarrow (\langle M_1 \rangle \in P \iff \langle M_2 \rangle \in P) \]

• Then P is undecidable
Proof:

• Let M_0 be a RAM with $L(M_0) = \emptyset$
• We may assume that $\langle M_0 \rangle \notin P$ (otherwise, use \bar{P} in place of P)
• Let M_1 be any RAM with $\langle M_1 \rangle \in P$
• Reduction: $A_{\text{RAM}} \leq P$
Proof (cont’d):

- Map \(\langle M, x \rangle \) to \(M' \), where \(M' \) is the RAM:

 on input \(x' \):

 run \(M \) on input \(x \)

 if and when \(M \) halts with an output \(y \):

 if \(y = 1 \) then

 run \(M_1 \) on input \(x' \)

 else

 output 0 and halt

- if \(M \) accepts \(x \) then \(L(M') = L(M_1) \), and \(\langle M_1 \rangle \in P \Rightarrow \langle M' \rangle \in P \)

- if \(M \) does not accept \(x \), then \(L(M') = \emptyset = L(M_0) \), and \(\langle M_0 \rangle \notin P \Rightarrow \langle M' \rangle \notin P \)