Honors Algorithms
G22.3520-001 Fall 2007

Lecture 25
Theorem:
• PDA’s and CFG’s are equivalent

Proof of theorem (part 1):
• Suppose \(G = (\Sigma, \mathcal{V}, S, \mathcal{R}) \) is a CFG
• PDA for \(L(G) \):

\[
\text{push } S\$
\]

\[
\text{read } a, \text{ pop } a \quad (\forall a \in \Sigma)
\]

\[
\text{pop } A, \text{ push } \alpha \quad (\forall A \rightarrow \alpha \in \mathcal{R})
\]

\[
\text{pop } $
\]

\[
\text{(chart diagram)}
\]
Example:

\[
E \rightarrow E + T \ | \ T \\
T \rightarrow T \ast F \ | \ F \\
F \rightarrow (E) \ | \ a \ | \ \cdots \ | \ z
\]

Leftmost derivation for \(a + b \ast c \):

\[
E \Rightarrow E + T \Rightarrow T + T \Rightarrow F + T \Rightarrow a + T \\
\Rightarrow a + T \ast F \Rightarrow a + F \ast F \Rightarrow a + b \ast F \Rightarrow a + b \ast c
\]

<table>
<thead>
<tr>
<th>consumed input</th>
<th>stack</th>
<th>consumed input</th>
<th>stack</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>(E) $</td>
<td>(a +)</td>
<td>(T \ast F) $</td>
</tr>
<tr>
<td>(a +)</td>
<td>(E + T) $</td>
<td>(a +)</td>
<td>(F \ast F) $</td>
</tr>
<tr>
<td>(a +)</td>
<td>(T + T) $</td>
<td>(a +)</td>
<td>(b \ast F) $</td>
</tr>
<tr>
<td>(a +)</td>
<td>(F + T) $</td>
<td>(a + b)</td>
<td>(* F) $</td>
</tr>
<tr>
<td>(a +)</td>
<td>(a + T) $</td>
<td>(a + b \ast)</td>
<td>(F) $</td>
</tr>
<tr>
<td>(a +)</td>
<td>(+ T) $</td>
<td>(a + b \ast)</td>
<td>(c) $</td>
</tr>
<tr>
<td>(a +)</td>
<td>(T) $</td>
<td>(a + b \ast c)</td>
<td>$</td>
</tr>
</tbody>
</table>
Proof of theorem (part 2):

• Let M be a PDA

• We want to construct an equivalent CFG

• Simplifying assumptions:
 1. M has a single accept state q_{accept}
 2. M empties its stack before accepting:
 \[
 x \in L(M) \iff (q_0, x, \varepsilon) \vdash^* (q_{\text{accept}}, \varepsilon, \varepsilon)
 \]
 3. Each transition either pushes or pops a single symbol (but not both)
Proof (cont’d):
• Idea: dynamic programming
• For all states p, q, define a variable A_{pq} with the property that for all $x \in \Sigma^*$:
 \[A_{pq} \Rightarrow^* x \iff (p, x, \varepsilon) \vdash^* (q, \varepsilon, \varepsilon) \]
• Start symbol: $A_{q_0q_{accept}}$
• Rules:
 ○ for each state p: $A_{pp} \rightarrow \varepsilon$
 ○ for all states p, q, r: $A_{pq} \rightarrow A_{pr}A_{rq}$
 ○ for all transitions
 \([p \rightarrow r : \text{read } u, \text{push } t], [s \rightarrow q : \text{read } \nu, \text{pop } t]\),
 where p, q, r, s are states, $u, \nu \in \Sigma^*$, and t is a stack symbol, add the rule:
 \[A_{pq} \rightarrow uA_{rs} \nu \]
Proof (cont’d):

- **Claim 1**: if $A_{pq} \Rightarrow^* x$, then $(p, x, \varepsilon) \vdash^* (q, \varepsilon, \varepsilon)$
 Easy induction on size of parse tree
- **Claim 2**: if $(p, x, \varepsilon) \vdash^* (q, \varepsilon, \varepsilon)$, then $A_{pq} \Rightarrow^* x$
 Induction on length n of the computation:
 - $n = 0$: use the rule $A_{pp} \rightarrow \varepsilon$
 - $n > 0$ and the computation enters an intermediate configuration with an empty stack: use the appropriate rule $A_{pq} \rightarrow A_{pr}A_{rq}$
 - $n > 0$ and the stack never empties: use the appropriate rule $A_{pq} \rightarrow uA_{rs}v$
Definition:
• A language is context free if it is generated by some CFG (or equivalently, is recognized by some PDA)

Theorem (Pumping Lemma for CFL’s):
• Let A be a context-free language
• \(\exists p \in \mathbb{Z}_{>0} \ \forall s \in A \) with \(|s| \geq p \) \(\exists u, v, w, x, y \in \Sigma^* : \)
 0. \(s = uvwxy \)
 1. \(|vwx| \leq p \)
 2. \(|vx| > 0 \)
 3. \(uv^kwx^ky \in A \) for all \(k \in \mathbb{Z}_{k \geq 0} \)
Proof:

• Let \((\Sigma, \mathcal{V}, S, \mathcal{R})\) be a CFG for \(A\)
• Let \(B \geq 2\) be an upper bound on the length of the RHS of any rule
• Fact: for \(s \in A\), if \(T\) is a parse tree for \(s\) of height \(h\), then \(|s| \leq B^h\)
• Set \(p := B^{|\mathcal{V}|+1}\)
• Now let \(s \in A\) with \(|s| \geq p\)
• Choose a parse tree \(T\) for \(s\), and choose \(T\) so that there is no smaller parse tree for \(T\)
• Let \(h := \) height of \(T\)
Proof (cont’d):

• We have \(B^n+1 = p \leq |s| \leq B^h \),

• Thus, \(h \geq |\mathcal{V}| + 1 \)

• Consider a path of length \(h \) in \(T \)

• This path contains \(h + 1 \) nodes, of which \(h \) are variables

• As \(h \geq |\mathcal{V}| + 1 \), some variable must repeat

• Following the path from leaf to root, let \(A \) be the first variable that repeats
Proof (cont’d):

- We must have $v \neq \varepsilon$ or $x \neq \varepsilon$; otherwise, we would get a smaller parse tree for s, contradicting the minimality of T:
Proof (cont’d)

• We must also have $|\nu wx| \leq p$
 The height of the subtree for νwx is $\leq |\nu| + 1$, and so $|\nu wx| \leq B^{|\nu|+1} = p$

• Finally, we can “pump down” or “pump up”, as desired:

- Pump down
- Pump up
Example:

- Let $A = \{ 0^n \# 0^n \# 0^n : n \geq 0 \}$
- To apply pumping lemma, assume A is CF, and let p be the “pump length”
- Let $s = 0^p \# 0^p \# 0^p \in A$
- We have to show that no matter how we split s up as $s = uvwxy$, with $|vx| > 0$ and $|vwx| \leq p$, we can pump v and x to get a string outside of A
- The point is, since $|vwx| \leq p$, the “pump handles” v and w can touch at most two of the three “0 regions”
- So by pumping, we will either throw the 0’s out of balance, or we’ll get the wrong number of #’s
CF and regular languages:

- Every regular language is context free

Closure properties:

- If A and B are context free, then so are $A \cup B$, AB, and A^* (the “regular operations”)
- CFL’s are not closed under intersection and complement

Example:

- Let $A := \{0^n \# 0^n \# 0^m : n, m \geq 0\}$
- Let $B := \{0^n \# 0^m \# 0^m : n, m \geq 0\}$
- A and B are CF, while $A \cap B = \{0^n \# 0^n \# 0^n : n \geq 0\}$ is not
Fact: if A is context free, and R is regular, then $A \cap R$ is context free

- Let M be a PDA for A
- Let D be a DFA for R
- Construct a PDA for $A \cap R$, whose state space is the Cartesian product of the state spaces of M and D
Efficiently recognizing CFL’s:

• Let $G = (\Sigma, \mathcal{V}, S, \mathcal{R})$ be a CFG, and let $x \in \Sigma^*$
• We want to test if $x \in L(G)$
• Write $x = x[1..n]$, where $n = |x|$

• Assume G has the following form:

 ○ for every $A \in \mathcal{V}$, there is exactly one rule, and it is of one of the following three forms:

 $A \rightarrow B_1 \mid B_2 \quad (B_1, B_2 \in \mathcal{V})$

 $A \rightarrow B_1 B_2 \quad (B_1, B_2 \in \mathcal{V})$

 $A \rightarrow u \quad (u \in \Sigma^*)$

• Any grammar can be easily transformed into a grammar of this form, with only a constant blow-up in total size
Recognizing CFL’s (cont’d):

• Construct and AND/OR graph with vertices
 \((A, i, j) \quad A \in \mathcal{V}, \quad i = 1 \ldots n + 1, \quad j = i - 1 \ldots n\)

• Meaning: \((A, i, j) \iff A \Rightarrow^* x[i..j]\)

• \(A \rightarrow B_1 | B_2:\)
 \[A \Rightarrow^* x[i..j] \iff (B_1 \Rightarrow^* x[i..j]) \lor (B_2 \Rightarrow^* x[i..j])\]

So \((A, i, j)\) is an OR-node, with two successors, \((B_1, i, j)\) and \((B_2, i, j)\)
Recognizing CFL’s (cont’d):

- \(A \rightarrow B_1B_2 \):

\[
A \Rightarrow^* x[i..j] \iff \exists k = i..j + 1 \left[(B_1 \Rightarrow^* x[i..k-1]) \land (B_2 \Rightarrow^* x[k..j]) \right]
\]

\((A, i, j)\) is an OR-node, whose successors are auxiliary nodes \((A, i, k, j)\), for \(k = i..j + 1 \)

Each auxiliary node \((A, i, k, j)\) is an AND-node, with two successors, \((B_1, i, k - 1)\) and \((B_2, k, j)\)
Recognizing CFL’s (cont’d):

- $A \rightarrow u$:

 $A \Rightarrow^* x[i..j] \iff x[i..j] = u$

 (A, i, j) is a CONSTANT-node

- # of vertices $= O(|\mathcal{V}|n^3)$

- # of edges $= O(|\mathcal{V}|n^3)$

- Need to find a least fixed point

- Total time: $O(|G|n^3)$, where $|G|$ is the total size of the original grammar (without simplifications)