Honors Algorithms
G22.3520-001 Fall 2007

Lecture 14
Read: CLRS 22
Graphs

\[G = (V, E), \quad V = \text{set of nodes (a.k.a., vertices)} \quad E = \text{set of edges} \]

\(G \) is usually assumed to be directed, so that an edge is a pair of nodes \((u, v)\) (graphically, \(u \rightarrow v \))

If \((u, v) \in E\), let’s call \(v \) a successor of \(u \), and \(u \) a predecessor of \(v \)

\[\text{Succ}(u) := \text{set of all successors of } u \]

An undirected graph is just a special case of a directed graph, where \((u, v) \in E \Rightarrow (v, u) \in E\)

One usually assumes an undirected graph contains no self loops, i.e., edges \((u, u)\)
Representations

• *Sparse*: an array of adjacency lists

an array A indexed by V, where $A[u]$ is a linked list containing all successors of u

 size: $O(|V| + |E|)$

 this will be the “default”

• *Dense*: an boolean array A indexed by $V \times V$, where $A[u, v] = true$ iff $(u, v) \in E$

 size: $O(|V|^2)$
Breadth first search (BFS)

Input: a graph $G = (V, E)$, and a node $s \in V$

Outputs:

- the “shortest distance” array d, indexed by V, so that $d[v] =$ length of shortest path from s to v
- a “breadth first search” tree T, represented as an array π indexed by V

$\pi[v] = u$ means u is v’s parent in T

the root T is s, and paths in T are shortest paths in G
Algorithm BFS(G, s):
 for each \(v \in V \)
 \(Color[v] \leftarrow \text{white} \) // undiscovered
 \(d[v] \leftarrow \infty, \pi[v] \leftarrow \text{Nil} \)
 \(Color[s] \leftarrow \text{gray} \) // discovered
 \(d[s] \leftarrow 0, \pi[s] \leftarrow \text{Nil} \)
 \(Q \leftarrow \text{NewQueue()} \) // a FIFO queue
 \(Q.\text{enqueue}(s) \)
 while not \(Q.\text{empty}() \) do
 \(u \leftarrow Q.\text{dequeue()} \)
 for each \(v \in \text{Succ}(u) \) do
 if \(Color[v] = \text{white} \) then
 \(Color[v] \leftarrow \text{gray} \) // discovered
 \(d[v] \leftarrow d[u] + 1, \pi[v] \leftarrow u \)
 \(Q.\text{enqueue}(v) \)
 \(Color[u] \leftarrow \text{black} \) // finished
Example:

BFS Tree:
Invariant:

- At the beginning of each loop iteration, Q contains all nodes that are colored gray.

Running time:

- Each node enqueued at most once (by coloring)
- Each node dequeued at most
- Each adjacency list scanned at most once
- \therefore Running time $= O(|V| + |E|)$
Correctness

Notation: $d[\nu] = \text{computed distance}$

$\delta(s, \nu) = \text{length of shortest path from } s \text{ to } \nu$

Shortest Path Lemma

If $\delta(s, \nu) = m > 0$, then ν is the successor of some node u with $\delta(s, u) = m - 1$

Proof:

- Consider a shortest path from s to ν:

 $$
 s \xrightarrow{m-1} u \rightarrow \nu
 $$

- The path $s \xrightarrow{m} u$ must be a shortest path from s to u (otherwise, we could find an even shorter path to ν). QED
Theorem

Algorithm BFS eventually discovers every node reachable from \(s \)

Prove by induction on \(m \):

\[
\text{for all } v \in V, \text{ if } \delta(s, v) = m, \text{ then BFS discovers } v
\]

\(m = 0 \): clear; \(m > 0 \):

- Suppose \(v \in V \) with \(\delta(s, v) = m \)
- By Shortest Path Lemma, \(v \) has a predecessor \(u \) with \(\delta(s, u) = m - 1 \)
- By induction, BFS discovered \(u \), and placed \(u \) in \(Q \)
- When BFS removes \(u \) from \(Q \), it discovers \(v \) (or finds that it was already discovered)
Theorem
BFS correctly computes \(d[\nu] = \delta(s, \nu) \) for all \(\nu \in V \)

Proof:

• Let \(\nu_0, \nu_1, \ldots \) be the nodes listed in the order they are removed from \(Q \)

• We can partition the execution of BFS into epochs 0, 1, 2, \ldots

\[
\nu_0, \ldots, \nu_{j_0}, \nu_{j_0+1}, \ldots, \nu_{j_1}, \ldots
\]

- epoch 0
- epoch 1

• A new epoch starts at \(\nu_j \) if \(\delta(s, \nu_j) \neq \delta(s, \nu_{j-1}) \)
Prove by induction on i:

At the beginning of epoch i, Q contains precisely all nodes v such that $\delta(s, v) = i$, and $d[v] = i$ for all these nodes

$i = 0$: clear

Assume for $0, \ldots, i$ and prove for $i + 1$:

- During epoch i, by the lemma, and the induction hypothesis, all nodes v with $\delta(s, v) = i + 1$ will be discovered and placed at the end of Q during epoch i

- Epoch i ends when all nodes v with $\delta(s, v) = i$ have been removed from Q

QED. One can also easily show that T is correct
Depth First Search (DFS)

Algorithm $DFS(G)$:

for each $v \in V$ do: $Color[v] \leftarrow \text{white}$, $\pi[v] \leftarrow \text{Nil}$

$ttime \leftarrow 0$

for each $v \in V$ do

if $Color[v] = \text{white}$ then $RecDFS(v)$

Algorithm $RecDFS(u)$:

$Color[u] \leftarrow \text{gray}$

$d[u] \leftarrow ++ttime$ \hspace{1em} // discovery time

for each $v \in Succ(u)$ do:

if $Color[v] = \text{white}$ then

$\pi[v] \leftarrow u$, $RecDFS(v)$

$Color[u] \leftarrow \text{black}$

$f[u] \leftarrow ++ttime$ \hspace{1em} // finish time
DFS Forest:
- Tree edge
- Forward edge
- Back edge
- Cross edge
Invariant:

- At the beginning if each loop iteration, the gray nodes are the ancestors of u in the DFS forest, and these are also the nodes currently on the “recursion stack”

Running Time Analysis:

- Each node is discovered once
- Each edge is traversed once
- Running time $= O(|V| + |E|)$
For $u, v \in V$, “$u \subseteq v$” means that u is a descendent of v in the DFS forest (possibly $u = v$), and “$u \sqsubset v$” means u is a proper descendent of v (so $u \neq v$)

Parenthesis Theorem

For all $u, v \in V$, exactly one of the following holds:

1. $[d[u], f[u]] \cap [d[v], f[v]] = \emptyset$, $u \not\subseteq v$, and $v \not\subseteq u$

2. $[d[u], f[u]] \subseteq [d[v], f[v]]$, and $u \subseteq v$

3. $[d[u], f[u]] \supseteq [d[v], f[v]]$, and $u \supseteq v$
Classification of edge $u \to v$

- **Tree edge:** in the DFS forest ($u \subseteq v$)
 - v was *white* when $u \to v$ was explored;
 $\left(d[u] < d[v] < f[v] < f[u]\right)$

- **Back edge:** $u \sqsubset v$ (includes self loops)
 - v was *gray* when $u \to v$ was explored
 $\left(d[v] \leq d[u] < f[u] \leq f[v]\right)$

- **Forward edge:** a non-tree edge, $u \sqsubset v$
 - v was *black* when $u \to v$ was explored, but
 white when u was discovered
 $\left(d[u] < d[v] < f[v] < f[u]\right)$

- **Cross edge:** $u \not\subseteq v$ and $u \not\sqsubset v$
 - v was *black* when $u \to v$ was explored, and
 black when u was discovered
 $\left(d[v] < f[v] < d[u] < f[u]\right)$
 - points “into the past” (right to left)
Some Back, Forward, and Cross edges

u discovered

u finished
White Path Theorem

Let $u, v \in V$.

$u \sqsupseteq v \iff$

1. at the time u is discovered,
2. there is a path from u to v consisting only of white nodes

(\Rightarrow) Assume $u \sqsupseteq v$
White Path Theorem

Let $u, v \in V$.

$u \sqsupseteq v \iff \begin{cases}
 \text{at the time } u \text{ is discovered,} \\
 \text{there is a path from } u \text{ to } v \\
 \text{consisting only of white nodes}
\end{cases}$

(\Leftarrow) Let $u = v_0 \to v_1 \to \cdots \to v_k = v$ be the white path

Claim: $u \supseteq v_i$ for all i. Assume not, and let i be minimal such that $u \nsubseteq v_i$ ($i > 0$) \Rightarrow \Leftarrow
Topological Sorting

Suppose $G = (V, E)$ is a DAG (Directed Acyclic Graph)

A topological sort of G is an ordering of the vertices

$$V_1, V_2, \ldots, V_n$$

such that $(v_i, v_j) \in E \Rightarrow i < j$

“all arrows go from left to right”

Algorithm TopSort

- initialize an empty list
- Run DFS: When a node is painted black, insert it at the front of the list

So we output vertices on order of decreasing finishing time
Lemma

G has a cycle \iff DFS produces a back edge

Proof:

- (\Leftarrow) A back edge trivially yields a cycle
• (⇒) Suppose G has a cycle C of vertices, and let v be the first first vertex discovered in C:

By the White Path Theorem, u is a descendent of v in the DFS forest

∴ the edge $u \rightarrow v$ is a back edge
Theorem
Algorithm TopSort is correct

Proof:
- Let \((u, v) \in E\)
- We want to show \(f[v] < f[u]\)
- Cases:
 - \((u, v)\) is a tree edge: \(u \cong v\) and
 \(d[u] < d[v] < f[v] < f[u]\)
 - \((u, v)\) is a back edge: impossible, since \(G\) is acyclic
 - \((u, v)\) is a forward edge: \(u \cong v\) and
 \(d[u] < d[v] < f[v] < f[u]\)
 - \((u, v)\) is a cross edge: \(f[v] < d[u] < f[u]\)
- QED