Honors Algorithms
G22.3520-001 Fall 2007

Lecture 11
Read: CLRS 19, 20
Mergeable Heaps

Operations:

- \(H \leftarrow Create() \)
- \(Insert(H, x) \) – insert node \(x \)
- \(x \leftarrow FindMin(H) \) – return node with minimum value
- \(x \leftarrow ExtractMin(H) \) – delete node with minimum value
- \(H \leftarrow Union(H_1, H_2) \) – destructive union
- \(Decrease(H, x, v) \) – decrease value of node \(x \) to \(v \)
- \(Delete(H, x) \) – delete node \(x \)
<table>
<thead>
<tr>
<th>procedure</th>
<th>binary heap</th>
<th>2-3 trees</th>
<th>binom heap</th>
<th>fib heap</th>
</tr>
</thead>
<tbody>
<tr>
<td>Create</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>Insert</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
<td>$O(\log n)^*$</td>
</tr>
<tr>
<td>FindMin</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>ExtractMin</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
<td>$O(\log n)*$</td>
</tr>
<tr>
<td>Union</td>
<td>$O(n)$</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>Decrease</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
<td>$O(1)*$</td>
</tr>
<tr>
<td>Delete</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
<td>$O(\log n)^*$</td>
</tr>
</tbody>
</table>

$^* = \text{amortized cost}$
Binomial Trees

\[B_k \quad (k = 0, 1, 2, \ldots) \]

\[B_0 = \text{single node} \]

\[B_k : \]

\[B_{k-1} \quad B_k \]

\[B_k : \]

\[B_{k-1} \quad B_{k-1} \]

\[0: \quad 1: \]

\[2: \quad 3: \]
Properties of B_k

- 2^k nodes
- height = k
- at depth i, there are $\binom{k}{i}$ nodes (Pascal’s triangle)
- root has k children, which are roots of B_{k-1}, \ldots, B_0
- all nodes beside the root have $< k$ children

Corollary: in an n-node binomial tree, every node has degree $\leq \log_2 n$
Binomial Heaps

$H = a$ set of binomial trees
Each node stores an item

Binomial Heap Properties:

- each tree in H satisfies the usual min-heap property
- for each $k \geq 0$, B_k occurs in H at most once

Implication: $|H| \leq \log_2 n + 1$

Proof. Let $|H| = t$

$n \geq 2^0 + 2^1 + \cdots + 2^{t-1} = 2^t - 1$

$\Rightarrow 2^t \leq n + 1 \Rightarrow t \leq \log_2(n + 1) \leq \log_2 n + 1$
Some implementation details:

- each node has
 - a value field
 - a pointer to its list of children
 - and a count of the # of children
 - a pointer to its parent

- the heap itself is a list of binomial trees in order of increasing size:
 \[(B_{k_1}, B_{k_2}, \ldots, B_{k_t})\]
 \[0 \leq k_1 < k_2 < \ldots < k_t \leq \log_2 n, \quad t \leq \log_2 n + 1\]

- \(Min[H] := \) pointer to node with minimum value
 (a root of one of the trees)
Mergeable Heap Operations

Create():

FindMin(H): return Min[H]

H ← Union(H₁, H₂):

Low-level merge step — time = O(1)

\[x \geq y \]
Use a simple “merge sort like” procedure:

Result: \(B_{k_1}, \ldots, B_{k_t}\)

Inputs: \(B_{\ell_1}, B_{\ell_2}, \ldots\)
\(B_{m_1}, B_{m_2}, \ldots\)

Invariants: \(k_1 < \cdots < k_t \leq \ell_1 < \ell_2 < \cdots\)
\(k_t \leq m_1 < m_2 < \cdots\)

Logic:

- if \(\ell_1 = m_1\) then
 append merge of \(B_{\ell_1}\) and \(B_{m_1}\) to result
- else if \(\ell_1 < m_1\) then
 merge (if \(\ell_1 = k_t\)) or append (o/w) \(B_{\ell_1}\) to result
- else
 merge (if \(m_1 = k_t\)) or append (o/w) \(B_{m_1}\) to result
Insert\((H, x)\): make a heap \(H_1\) out of \(x\),
\[H \leftarrow \text{Union}(H, H_1) \]

ExtractMin\((H)\):
- \(x \leftarrow \text{Min}[H]\)

- Let \(H_1\) be the heap obtained by removing the tree rooted at \(x\) from \(H\)
- Let \(H_2\) be the heap consisting of the trees rooted at \(x\)’s children (in reverse order)
- \(H \leftarrow \text{Union}(H_1, H_2)\), return \(x\)
Decrease(H, x, ν):
 - Usual “bubble up” procedure (no structural changes)

Delete(H, x):
 - $Decrease(H, x, -\infty), ExtractMin(H)$
Fibonacci Heaps

• A list H of min-ordered trees

• Each node x has:
 ◦ a value field
 ◦ a pointer to a list of children
 ◦ a child count
 ◦ a parent pointer
 ◦ a boolean field $mark[x]$ (initially false)

• $Min[H] :=$ pointer to node with minimum value (a root of one of the trees)
Potential Function

\[t(H) := \# \text{ of trees} \]

\[m(H) := \# \text{ of marked nodes} \]

\[\Phi(H) := t(H) + 2m(H) \]

Actually, we maintain a collection of heaps, and the “global” \(\Phi = \text{sum of the individual } \Phi \text{’s} \)

Maximum degree

- \(D(n) := \text{an upper bound on the degree (}\# \text{ of children) of any node in an } n\text{-node Fibonacci heap} \)
If no *Decrease* or *Delete* operations are performed:

- all trees are binomial trees (although some trees may have the same size, and the trees are not sorted by size)
- \(D(n) \leq \log_2 n \)
- all nodes are unmarked
Create(): $c = 1, \Delta \Phi = 0 \Rightarrow \hat{c} = 1$

Insert(H, x): just append a new 1-item tree, and update $Min[H]$

\[c = 1, \Delta \Phi = 1 \Rightarrow \hat{c} = 2 \]

FindMin(H): return $Min[H]$

\[c = 1, \Delta \Phi = 0 \Rightarrow \hat{c} = 1 \]

$H \leftarrow Union(H_1, H_2)$: just concatenate the two lists of trees, and calculate $Min[H]$

\[c = 1, \Delta \Phi = 0 \Rightarrow \hat{c} = 1 \]
ExtractMin(H):
• \(x \leftarrow \text{Min}[H] \)
• Update \(\text{Min}[H] \) by examining \(x \)'s children, and the roots of all the other trees in \(H \)
• Merge the trees rooted at the children of \(x \) with the other trees in \(H \)
 ◦ consolidate trees so that no two have roots with the same degree
 ◦ if no \(\text{Decrease} \) or \(\text{Delete} \) operations have been performed, the result is a binomial heap
Details of the merge step:

- $n := \#\ of\ nodes\ in\ H$
- $t := \#\ of\ trees\ in\ H = t(H)$
- $d := \#\ of\ children\ of\ x \leq D(n)$
- We need to consolidate $d + t - 1$ trees: $T_1, T_2, \ldots, T_{d+t-1}$

- Let $d_i := \text{the\ degree\ of\ } T_i\text{'s\ root}$
- Initialize an array $A[0..D(n)]$ of trees (each initialized to “⊥”)
- Let “Merge” be the low-level merge operation that we used to merge two binomial trees
Logic:

\[
\text{for } i \leftarrow 1 \text{ to } d + t - 1 \text{ do}
\]
\[
\quad k \leftarrow d_i
\]
\[
\text{while } A[k] \neq \bot \text{ do}
\]
\[
\quad (*) \quad T_i \leftarrow \text{Merge}(T_i, A[k])
\]
\[
\quad A[k] \leftarrow \bot
\]
\[
\quad k \leftarrow k + 1
\]
\[
\quad A[k] \leftarrow T_i
\]

Invariants:

- at any time, \(A[k] = \bot \) or is a tree whose root has degree \(k \)
- at the line marked “\((*)\)”, the degree of \(T_i \)’s root increases by 1
Actual cost:

- The consolidate routine works like a binary counter, and takes time $O(d + t)$
- All other steps also take time $O(d + t)$
- \therefore we may set $c := D(n) + t(H)$

Change in potential:

- $\Phi_0 = t(H) + 2m(H)$
- $\Phi_1 \leq (D(n) + 1) + 2m(H)$, since after consolidation, at most $D(n) + 1$ trees remain
- $\Delta\Phi := \Phi_1 - \Phi_0 \leq D(n) + 1 - t(H)$

Amortized cost: $\hat{c} := c + \Delta\Phi \leq 2D(n) + 1$
$\hat{c} \leq 2D(n) + 1$

If these are the only operations performed, then

- $D(n) \leq \log_2 n$
- amortized cost of $ExtractMin$ is $O(\log n)$

Next time: $Decrease$ and $Delete$

- Binomial tree structure will be destroyed
- We’ll finally make use of “marks”
- We’ll need to derive an upper bound
 $D(n) = O(\log n)$