Consider the case that $d \in \text{CHAIN}$ and assume that d satisfies Property χ. Thus, we let us present a heuristic by which we can systematically derive the auxiliary transition relation. By premise CHAIN, all states beyond d satisfy χ, and the transition relation can be written as χ^{-}. In particular, $(\chi)_{\chi^{-}} = (\chi)_{\chi^{-}} = (\chi)_{\chi^{-}}$. Thus, we can summarize premises C_{2} and C_{3} for the case $i = 1$. From premises C_{2} and C_{3}, we can infer χ^{-}, and hence, χ.

To prove property CHAIN, in order to prove Property χ, we construct the case that $d \in \text{CHAIN}$ and d satisfies Property χ. Thus, we can systematically derive the auxiliary transition relation. By premise CHAIN, all states beyond d satisfy χ, and the transition relation can be written as χ^{-}. In particular, $(\chi)_{\chi^{-}} = (\chi)_{\chi^{-}} = (\chi)_{\chi^{-}}$. Thus, we can summarize premises C_{2} and C_{3} for the case $i = 1$. From premises C_{2} and C_{3}, we can infer χ^{-}, and hence, χ.
In the computation of this table, we made free use of the relevant invariants which can be viewed as an inequality with the unknown h_2. For a given f_2, we can try to solve such an inequality by coming the iteration sequence

\[
\begin{array}{c}
\text{Imp}\\(0 \land f_2) \text{Imp} \\
1 : h_2
\end{array}
\]

until it converges.

\[
\text{...}
\]

\[
\begin{array}{c}
(0 \land f_2) \text{Imp} \\
1 : h_2
\end{array}
\]

We obtain the iteration sequence for the case that $\nu f_2 = h_2$ and $\nu f_2 = 0$.

Continued

Computation of f_1 Contindued