Deductive Verification of Reactive Systems
Fall 2007: Assignment No. 3

Due Date: 12.21.07
December 10, 2007

The solution to this assignment should be submitted as attachment to an e-mail message. The textual part should be prepared as a postscript, PDF, or Word document. All submitted SMV and PF files should be submitted as separate files. You may group all relevant files into a single file, using ZIP or TAR.

1 Peterson(N) Algorithm

In Fig. 1 we present Algorithm Peterson(N), which implements mutual exclusion among N processes, using shared variables but no semaphores.

\[
\begin{array}{l}
\text{in} \quad N : \text{integer where } N > 1 \\
\text{local} \quad y : \text{array } [1..N] \text{ of } 0..N \text{ where } \forall k : y[k] = 0 \\
\quad s : \text{array } [1..N] \text{ of } 1..N \\
\hline
\text{loop forever do} \\
\quad [\ell_0 : \text{NonCritical} \\
\quad \ell_1 : \text{while } y[i] < N \text{ do} \\
\quad \quad [\ell_2 : (y[i], s[y[i]] + 1] := (y[i] + 1, i) \\
\quad \quad \ell_3 : \text{await } s[y[i]] \neq i \lor \forall k \neq i : y[k] < y[i] \\
\quad \ell_4 : \text{Critical} \\
\quad \ell_5 : y[i] := 0]
\end{array}
\]

Figure 1: Program Peterson(N)

In file petn.smv available on the course web page, we present an SMV program that represents a finite-state version of program Peterson(N). It represents a finite-state instance obtained by taking N = 5.

In this program, each process \(P[i] \) goes through \(N \) competition levels before entering its critical section. The variable \(y[i] \) represents the level of the competition in which \(P[i] \) is currently engaged. In statement \(\ell_2 \), \(P[i] \) increments its competition level to \(L \), while saving in \(s[L] \) its identity \(i \). The signature \(s[L] \) helps to break ties in case two or more processes...
enter competition level \(L \) at about the same time. This is because \(s[L] \) records the identity of the most recent process that entered competition level \(L \). Statement \(\ell_3 \) allows a process to proceed to the level beyond \(L \) if either \(y[i] \) is greater than all \(y[j], j \neq i, \) or \(s[L] \neq i \) which provides evidence that \(P[i] \) was not the last to enter level \(L \). In the worst case, when all processes attempt to access their critical sections at about the same time, there will be one process left at every level \(L \) — the process \(P[i] \), such that \(s[L] = i \). Since there are \(N \) competition levels, at most one process can reach level \(N \) and be admitted to its critical section.

Task 1: Model check the invariance of the following safety assertion:

\[\varphi : \neg(at_{-\ell_4}[1] \land at_{-\ell_4}[2]) \]

This assertion states mutual exclusion between processes \(P[1] \) and \(P[2] \). If it takes too long, you can reduce the number of processes in the checked program.

Task 2: Model check the following response property:

\[\psi : at_{-\ell_1}[1] \implies \Box at_{-\ell_4}[1] \]

This formula states the property of accessibility for process \(P[1] \). If it takes too long, you may reduce the number of processes.

Task 3: Present a deductive proof of the invariance of the safety property \(\varphi \). In your proof you may use an auxiliary inductive assertion that includes the following elements:

1. Assertion that relates the location of process \(P[i] \) to the value of \(y[i] \). For example, it may state that while \(P[i] \) is at locations \(\ell_0, \ell_2, \ell_3, \{\ell_4, \ell_5\} \), then \(y[i] \) must satisfy the constraints \(y[i] = 0, y[i] < N, y[i] > 0, \) and \(y[i] = N \), respectively.

2. Statement \(\ell_3 \) contains the test

\[cond[i] : s[y[i]] \neq i \lor \forall k \neq i : y[k] < y[i] \]

An additional invariant that may be included in the inductive assertion states that once this test is passed successfully, it remains true until the value of \(y[i] \) is modified. Technically, this can be stated by requiring that if \(P[i] \) is at any of the locations \(\{\ell_1, \ell_2, \ell_4, \ell_5\} \) and \(y[i] > 0 \), then \(cond[i] \) should hold.

3. We say that process \(P[i] \) is engaged in an *active competition* if \(y[i] = L > 0 \) and \(s[L] \neq i \). This implies that \(P[i] \) is not alone at level \(L \). A crucial invariant states that if \(P[i] \) is engaged in an *active competition* at level \(L > 0 \), then all levels \(m \leq L \) are occupied. That is, \(y[s[m]] = m \) for every \(m \leq L \).
Task 4: Present a deductive proof of the response property ψ, using rule “wellx_lex” or rule “distr”.

The major component in the progress of process $P[1]$ from ℓ_1 to ℓ_4 consists of steps taken by process $P[1]$. It follows that transitions $\ell_1[1], \ell_2[1], \ell_3[1]$ are helpful whenever they are enabled. To monitor the progress of $P[1]$, we can use two consecutive entries in a lexicographic tuple, where the first can be $N - y[1]$, measuring the distance of $y[1]$ from N. The second entry could be a small integer constant, depending on which of the three $P[1]$-transitions is currently helpful.

The situation becomes more complicated when process $P[1]$ is at location ℓ_3 but the transition is not enabled because $cond[1]$ does not hold. This implies that $y[1] = L > 0$, $s[L] = 1$, and there are one or more processes at a level not smaller than L.

When this is the case we should trace the evolution until all processes at a level not smaller than L visit their critical section and drop out of the competition. The helpful transitions for this phase are any enabled transition of process $P[j]$, for some $j \neq 1$, such that $y[j]$ is (weakly) maximal among the y-values. That is, there does not exist a process $P[k]$, such that $y[k] > y[j]$. Note that the helpfulness condition for a transition $\tau_{(j, \ell)}$ should include, in addition to the enableness of $\tau_{(j, \ell)}$ and the maximality of $y[j]$, also the requirement $at.\, \ell_3[1] \land \neg cond[1]$.

According to this analysis, we will have two types of ranking functions, both ranging over 5-tuples of natural numbers. Corresponding to each of the three transitions of process $P[1]$, the ranking function will be of the form

$$\Delta_{(1, \ell)} : (N - y[1], c_{\ell}, 0, 0, 0)$$

For all other processes $P[j], j \neq 1$, we will have ranking functions of the form

$$\Delta_{(j, \ell)} : (N - y[1], C, \sum_k (y[k] \geq y[1]), N - y[j], d_{(j, \ell)})$$

where C is a fixed constant, $\sum_k (y[k] \geq y[1])$ is the number of processes $y[k]$ whose y-value is not smaller than $y[1]$. The two last components $(N - y[j], d_{(j, \ell)})$ measure the progress of $P[j]$ until it drops out of the competition and returns to ℓ_0.

2