Asynchronous Minimum Hops

Anna Zaks

October 23, 2007

Distributed Computing, NYU
Min Hops Problem

- Obtain the paths with the smallest number of links from a given node \(s \) to each other node of the network.

- Devise an asynchronous algorithm.

- The algorithm itself must determine when it terminates - we cannot just promise that it will eventually terminate.

![Network and Solution Graphs]
Initialization

- Let s be the root node
- Let $\text{dist}(x)$ denote the length of the shortest path from x to s
- $\text{dist}(s) = 0$
- For all nodes $x \neq s$: $\text{dist}(x) = \infty$
Action of the Root Node s

upon receipt of a message "compute min hops":

for all i in neighbors(s) {
 send a message to node i; //pass parameter dist(s)
}

for all i in neighbors(s) {
 await for the reply from node i;
}

broadcast termination;
Action of Every Network Node x

upon receipt of a message from node y:

$$\text{if (dist}(x) > \text{dist}(y)+1) \{$$

// reset the distance of x and it’s successors

$$\text{dist}(x) = \text{dist}(y)+1;$$

set the first link on the shortest path to y;

$$\text{for all } i \text{ in neighbors}(x) \{$$

send a message to i; //pass parameter dist(x)

$$\}$$

$$\text{for all } i \text{ in neighbors}(x) \{$$

await for the reply from node i;

$$\}$$

$$\}$$

send the reply to node y;
Correctness Argument (together with Dennis Shasha) 1/3

- Call a node "unhappy" with processing a message if it did not get a reply to at least one message that it had sent out. A node sends a reply if and only if it is "happy".

- If \(x \) is unhappy, there is a path of unhappy nodes from the root \(s \) to \(x \). Just follow the path along which the current message has been sent: \(s = y_0, y_1, \ldots, y_n, x \). All the nodes on that path are unhappy. Suppose \(y_i \) is unhappy, then so is \(y_{i-1} \) since it waits for a reply from \(y_i \).

- The root node \(s = y_0 \) is also unhappy so there won't be a premature termination.
Lemma: If a node i is happy in reply to a message with distance D, then $\text{dist}(i) \leq D + 1$. Only the following two cases are possible:

- Its distance already satisfies $\text{dist}(i) \leq D + 1$ as a result of some previous event. Either because it had reset its distance to the lower value in response to some previous message; or, in case $i = s$, it had been initialized with the lower distance value.
- It has just reset its distance to $\text{dist}(i) = D + 1$.

Correctness Argument (together with Dennis Shasha) 3/3

- Suppose a node x is happy in response to a message and $\text{dist}(x) = D$. Then, for all nodes j such that the min hops path from x to j is of distance N: $\text{dist}(j) \leq D + N$ and j also is happy. Let's proof by induction on N:
 - Base Case: If $N = 0$, then $j = x$ and the claim trivially holds.
 - Inductive Hypothesis: Assume the claim holds for $N = K$: for all nodes i s.t. min hops distance from x to i is K: $\text{dist}(i) \leq D + K$ and i is happy.
 - Inductive Step: Let's show that the claim holds for each node j whose min hops distance from x is $K + 1$. The min hops path from x to j must go through node i, which is a neighbor of j and is exactly K hops away from x. By the inductive assumption, node i is happy. Thus, i has received a reply from j (in response to a message with distance $\text{dist}(i)$). So j must also be happy and, by the lemma, $\text{dist}(j) \leq \text{dist}(i) + 1$. Applying the inductive hypothesis, we obtain $\text{dist}(j) \leq D + K + 1$.

- If the root node s is happy, then all nodes have the minimum hop value.

- The algorithm terminates because every change message reduces the number of hops to some node and that number is bounded by 1 from below.