Review

- Combining Decision Procedures
- Example Application: Translation Validation
Outline

- Number Theory
- Natural Numbers with Successor
- Natural Numbers with Successor and Less-Than
- Presburger Arithmetic

Source: Enderton, 3.0 - 3.2.
Number Theory

With a general understanding of first-order languages and theories, we now focus on a specific language, the language of number theory.

The parameters are $0, S, <, +, \times, E$.

Let N be the intended model of this language:

- $\text{dom } N = \mathbb{N}$, the natural numbers.
- $0^N = 0$,
- $S^N = \text{the successor function: } S(n) = n + 1$.
- $<^N = \text{the less-than relation on } \mathbb{N}$.
- $\times^N = \text{multiplication on } \mathbb{N}$.
- $E^N = \text{exponentiation on } \mathbb{N}$.

Number theory is the set of all sentences in this language which are true in N. We denote this theory $\text{Th } N$.
Reducts of Number Theory

Besides considering the model \mathcal{N}, we also consider the following models which are restrictions of \mathcal{N} to sublanguages:

- $N_S = (\mathcal{N}; 0, S)$
- $N_L = (\mathcal{N}; 0, S, <)$
- $N_A = (\mathcal{N}; 0, S, <, +)$
- $N_M = (\mathcal{N}; 0, S, <, +, \times)$

We consider the following questions for each model:

- Is the theory of this model decidable?
- If so, how can the theory be axiomatized?
- Is it finitely axiomatizable?
- What subsets of \mathcal{N} are definable in the model?
- What do the nonstandard models of the theory look like?
Notation

We will use infix notation: \(x < y \) instead of \(< xy \) etc.

For each natural number \(k \), we denote the associated term by \(S^k0 \).

This term is called the numeral for \(k \).
Natural Numbers with Successor

We begin with the simplest reduct:

\[N_S = (\mathcal{N}; 0, S). \]

Consider the theory \(Th N_S \). What are some of its sentences?
Natural Numbers with Successor

We begin with the simplest reduct:

\[N_S = (\mathbb{N}; 0, S). \]

Consider the theory \(Th \mathbb{N}_S \). What are some of its sentences?

- S1. \(\forall x \ Sx \neq 0 \).
- S2. \(\forall x \forall y (Sx = Sy \rightarrow x = y) \).
- S3. \(\forall y (y \neq 0 \rightarrow \exists x y = Sx) \).
- S4.1 \(\forall x Sx \neq x \).
- S4.2 \(\forall x SSx \neq x \).
- ...
- S4.n \(\forall x S^n x \neq x \).

Let \(A_S \) be the above set of sentences (including S4.n for each n).
Natural Numbers with Successor

Now, consider the set A_S.

What does an arbitrary model M of A_S look like?
Now, consider the set A_S.

What does an arbitrary model M of A_S look like?

M must contain the standard points:

$$0^M \rightarrow S^M(0^M) \rightarrow S^M(S^M(0^M)) \rightarrow \ldots$$
Natural Numbers with Successor

Now, consider the set A_S.

What does an arbitrary model M of A_S look like?

M must contain the **standard** points:

$$0^M \rightarrow S^M(0^M) \rightarrow S^M(S^M(0^M)) \rightarrow \ldots$$

Can M contain an element a which is not among the standard points?
Natural Numbers with Successor

Now, consider the set A_S.

What does an arbitrary model M of A_S look like?

M must contain the standard points:

\[
0^M \rightarrow S^M(0^M) \rightarrow S^M(S^M(0^M)) \rightarrow \ldots
\]

Can M contain an element a which is not among the standard points?

Such an element must be part of a Z-chain:

\[
\ldots \circ \rightarrow \circ \rightarrow a \rightarrow S^M(a) \rightarrow S^M(S^M(a)) \rightarrow \ldots
\]
Natural Numbers with Successor

Now, consider the set A_S.

What does an arbitrary model M of A_S look like?

M must contain the

standard points:

\[
0^M \rightarrow S^M(0^M) \rightarrow S^M(S^M(0^M)) \rightarrow \ldots
\]

Can M contain an element a which is not among the standard points?

Such an element must be part of a *Z-chain*:

\[
\ldots \circ \rightarrow \circ \rightarrow a \rightarrow S^M(a) \rightarrow S^M(S^M(a)) \rightarrow \ldots
\]

Thus, a model of A_S contains the standard points and 0 or more Z-chains.
Natural Numbers with Successor

Theorem

If M and M' are models of A_S having the same number of Z-chains, then they are isomorphic.

Proof

Clearly, there is an isomorphism between the standard parts of M and M'. Since they have the same number of Z-chains, we can extend this isomorphism to map each Z-chain of M to a Z-chain of M'.

Recall that a theory T is λ-categorical iff all models of T having cardinality λ are isomorphic.

Theorem

$Cn A_S$ is λ-categorical for any uncountable cardinal λ.

Proof

Since the standard part of a model of A_S only contributes a countably infinite number of elements, a model of A_S of cardinality λ must have λ different Z-chains. By the above theorem, any two such models are isomorphic.
Natural Numbers with Successor

Theorem

$Cn A_S$ is a complete theory.

Proof

Recall the Los-Vaught test:

Let T be a theory in a countable language such that

- T is λ-categorical for some infinite cardinal λ.
- All models of T are infinite.

Then T is complete.

By the previous theorem, $Cn A_S$ is λ-categorical for any uncountable cardinal λ. Furthermore, $Cn A_S$ has no finite models. Therefore $Cn A_S$ is complete. \blacksquare
Natural Numbers with Successor

Corollary

\(Cn A_S = Th N_S \).

Proof

We know that \(Cn A_S \subseteq Th N_S \). The first theory is complete, and the second is satisfiable. Therefore, the theories must be equal. (Why?)

Corollary

\(Th N_S \) is decidable.

Proof

Any complete and axiomatizable theory is decidable. \(A_S \) is a decidable set of axioms for this theory.
Elimination of Quantifiers

Once one knows that a theory is decidable, the next question is how to find an effective procedure for deciding it.

A common technique for providing decision procedures is the method of elimination of quantifiers.

A theory T admits elimination of quantifiers iff for every formula ϕ there is a quantifier-free formula ψ such that

$$T \models (\phi \leftrightarrow \psi).$$

The following theorem reduces the quantifier elimination problem to a particular special case.

Theorem

Assume that for every formula ϕ of the form $\exists x (\alpha_0 \land \ldots \land \alpha_n)$, where each α_i is a literal, there is a quantifier-free formula ψ such that $T \models (\phi \leftrightarrow \psi)$. Then T admits elimination of quantifiers.
Quantifier Elimination

Proof

The proof is by induction on formulas. Clearly, every atomic formula is equivalent to a quantifier-free formula (itself). Suppose that \(\alpha \) and \(\beta \) are formulas with quantifier-free equivalents \(\alpha' \) and \(\beta' \).

The propositional connective cases are trivial: \(T \models \neg \alpha \iff \neg \alpha' \), \(T \models (\alpha \land \beta) \iff (\alpha' \land \beta') \), etc.

For the quantifier cases, we can rewrite \(\forall x. \alpha \) as \(\neg \exists x. \neg \alpha \), so it is sufficient to consider \(\exists x. \alpha \). By induction hypothesis, this is equivalent to \(\exists x. \alpha' \), where \(\alpha' \) is quantifier-free. But now, we can convert \(\alpha' \) to DNF and distribute the existential quantifier over the disjunction to get \((\exists x. \gamma_0) \lor (\exists x. \gamma_1) \lor \cdots \lor (\exists x. \gamma_n) \), where each \(\gamma_i \) is a conjunction of literals. But then, by assumption, we can find an equivalent quantifier-free formula for each \(\exists x. \gamma_i \), resulting in an equivalent quantifier-free formula for \(\exists x. \alpha \). \(\square \)
Elimination of Quantifiers

Theorem

$\forall \alpha \exists x \left(\alpha_0 \land \ldots \land \alpha_l \right)$, where each α_i is a literal.

Proof

Consider a formula $\exists x \left(\alpha_0 \land \ldots \land \alpha_l \right)$, where each α_i is a literal.

Note that the only possible terms in the language are $S^k u$ where u is either 0 or a variable. Each α_i must be an equation or disequation between two such terms.

If x does not appear in some α_i, we can move α_i outside the quantifier. The remaining literals have the form $S^m x = S^n u$ or $S^m x \neq S^n u$ where u is 0 or a variable.

If u is x, then the equation is true if $m = n$ and false otherwise. We can use $0 = 0$ to represent true, and $0 \neq 0$ to represent false.

If, after making the above simplifications, all remaining literals are disequations, then the formula is true. (Why?)
Elimination of Quantifiers

Proof (cont.)

We have $\exists x (\alpha_0 \land \ldots \land \alpha_l)$, where each α_i is of the form $S^m x = S^n u$ or $S^m x \neq S^n u$ where u is 0 or a variable other than x. We also know there is at least one equation.

Suppose α_i is an equation $S^m x = t$. We replace α_i by $t \neq 0 \land \ldots \land t \neq S^{m-1} 0$ (since x cannot be negative) and then in each other α_j, we replace $S^k x = u$ by $S^k t = S^m u$.

After processing each literal containing x, the new formula does not contain x, so the quantifier can be eliminated. \qed
Natural Numbers with Successor

We can now give a decision procedure for CnA_S. Suppose we are given a sentence σ. Using quantifier elimination, we can find a quantifier-free sentence τ such that $A_S \models (\sigma \leftrightarrow \tau)$.

Note that τ is a sentence because quantifier elimination does not introduce any free variables, so if we start with a sentence, we will finish with a sentence.

An atomic sentence must be of the form $S^k0 = S^l0$ and each such sentence can be evaluated to true or false using A_S. Thus any Boolean combination of such sentences can also be evaluated to true or false.

This also provides an alternative proof that CnA_S is complete, since given any sentence σ we can compute its quantifier-free equivalent τ which must be either true or false.

Finally, we can use quantifier-elimination to show that a subset of \mathcal{N} is definable in N_S iff either it is finite or its complement is finite. (Why?)
Natural Numbers with Successor

Example

\[\forall x \forall y (x \neq y \rightarrow (x \neq 0 \lor y \neq 0)) \in Cn A_S \]
Natural Numbers with Successor

Example

\[\forall x \forall y \ (x \neq y \rightarrow (x \neq 0 \lor y \neq 0)) \in \mathbb{Cn} A_S \]

iff

\[\neg \exists x \exists y \ \neg (x \neq y \rightarrow (x \neq 0 \lor y \neq 0)) \in \mathbb{Cn} A_S \]
Natural Numbers with Successor

Example

\[\forall x \forall y (x \neq y \rightarrow (x \neq 0 \lor y \neq 0)) \in Cn A_S \]

iff

\[\neg \exists x \exists y \neg (x \neq y \rightarrow (x \neq 0 \lor y \neq 0)) \in Cn A_S \]

iff

\[\neg \exists x \exists y (x \neq y \land x = 0 \land y = 0) \in Cn A_S \]
Natural Numbers with Successor

Example

\(\forall x \forall y (x \neq y \rightarrow (x \neq 0 \lor y \neq 0)) \in \mathcal{C}n\mathcal{A}_S \)

iff

\(\neg \exists x \exists y \neg (x \neq y \rightarrow (x \neq 0 \lor y \neq 0)) \in \mathcal{C}n\mathcal{A}_S \)

iff

\(\neg \exists x \exists y (x \neq y \land x = 0 \land y = 0) \in \mathcal{C}n\mathcal{A}_S \)

iff

\(\neg \exists x (x \neq 0 \land x = 0) \in \mathcal{C}n\mathcal{A}_S \)
Natural Numbers with Successor

Example

\(\forall x \forall y (x \neq y \to (x \neq 0 \lor y \neq 0)) \in Cn A_S \)

iff

\(\neg \exists x \exists y \neg(x \neq y \to (x \neq 0 \lor y \neq 0)) \in Cn A_S \)

iff

\(\neg \exists x \exists y (x \neq y \land x = 0 \land y = 0) \in Cn A_S \)

iff

\(\neg \exists x (x \neq 0 \land x = 0) \in Cn A_S \)

iff

\(\neg (0 \neq 0) \in Cn A_S \)
Natural Numbers with Successor

Example

\(\forall x \forall y (x \neq y \rightarrow (x \neq 0 \lor y \neq 0)) \in CnA_S \)

iff

\(\neg \exists x \exists y \neg (x \neq y \rightarrow (x \neq 0 \lor y \neq 0)) \in CnA_S \)

iff

\(\neg \exists x \exists y (x \neq y \land x = 0 \land y = 0) \in CnA_S \)

iff

\(\neg \exists x (x \neq 0 \land x = 0) \in CnA_S \)

iff

\(\neg (0 \neq 0) \in CnA_S \)

iff

\(0 = 0 \in CnA_S \)
Natural Numbers with Successor and Less-Than

The ordering relation \(\{ \langle m, n \rangle \mid m < n \} \) is \textit{not} definable in \(N_S \).

Thus, suppose we add the less-than symbol, \(<\), to our language, and consider the standard model \(N_L = (\mathbb{N}; 0, S, <) \).

We will show that \(Th N_L \) is decidable and admits elimination of quantifiers. However, unlike \(Th N_S \), it is finitely axiomatizable.
Natural Numbers with Successor and Less-Than

The ordering relation \(\{ \langle m, n \rangle \mid m < n \} \) is not definable in \(N_S \).

Thus, suppose we add the less-than symbol, \(<\), to our language, and consider the standard model \(N_L = (N; 0, S, <) \).

We will show that \(Th N_L \) is decidable and admits elimination of quantifiers. However, unlike \(Th N_S \), it is finitely axiomatizable.

Consider the following set \(A_L \) of sentences:

- **S3.** \(\forall y (y \neq 0 \rightarrow \exists x \ y = Sx) \)
- **L1.** \(\forall x \forall y \ (x < Sy \leftrightarrow x \leq y) \)
- **L2.** \(\forall x \ x \not< 0 \)
- **L3.** \(\forall x \forall y \ (x < y \lor x = y \lor y < x) \)
- **L4.** \(\forall x \forall y \ (x < y \rightarrow y \not< x) \)
- **L5.** \(\forall x \forall y \forall z \ (x < y \rightarrow y < z \rightarrow x < z) \)

Our goal is to show that \(\text{Cn} A_L = Th N_L \).
Natural Numbers with Successor and Less-Than

We first show that $A_S \subseteq CnA_L$.

1. $A_L \vdash \forall x \ x < Sx$ (by L1).
2. $A_L \vdash \forall x \ x \not< x$ (by L4).
3. $A_L \vdash \forall x \forall y \ (x \not< y \leftrightarrow y \leq x)$ (by L3, L4, (2)).
4. $A_L \vdash \forall x \forall y \ (x < y \leftrightarrow Sx < Sy)$ (by L1, (3)).

Recall the definition of A_S:

- **S1.** $\forall x \ Sx \neq 0$.
- **S2.** $\forall x \forall y \ (Sx = Sy \rightarrow x = y)$.
- **S3.** $\forall y \ (y \neq 0 \rightarrow \exists x \ y = Sx)$.
- **S4.** $\forall x \ S^n x \neq x$.

S3 is already in A_L. S1 follows from L2 and (1). S2 follows from (4), L3, and (2). S4. n follows from (1), (2), and L5.

Thus, a model M of A_L consists of a standard part plus 0 or more \mathbb{Z}-chains. In addition the elements are ordered by $<^M$.
Natural Numbers with Successor and Less-Than

Theorem

The theory CnA_L admits elimination of quantifiers.

Proof

Again, consider a formula $\exists x (\beta_0 \land \ldots \land \beta_l)$, where each β_i is a literal. As before, the only possible terms in the language are $S^k u$ where u is either 0 or a variable.

There are now two possibilities for atomic formulas:

$$S^m u = S^n t \text{ and } S^m u < S^n t.$$

First, we can eliminate negation. We replace $t_1 \not< t_2$ by $t_2 \leq t_1$. We replace $t_1 \not= t_2$ by $t_1 < t_2 \lor t_2 < t_1$.

By distributing \exists over \lor (note there is a typo in the book), we obtain formulas of the form $\exists x (\alpha_0 \land \ldots \land \alpha_p)$, where each α_i is an atomic formula.

As before, if x does not appear in some α_i, we can move it outside the quantifier. Also, if some α_i is an equation $S^m x = t$, we can proceed as in the proof for N_S.

20
Natural Numbers with Successor and Less-Than

Proof (continued)

The remaining literals must have the form $S^m x < S^n u$ or $S^m u < S^n x$ where u is 0 or a variable. Notice that if u is x, then the formula can be replaced with true or false. We can rewrite the formula as

$$\exists x \left(\bigwedge_i t_i < S^{m_i} x \land \bigwedge_j S^{n_j} x < u_j \right).$$

If the second conjunction is empty, the formula is true. If the first conjunction is empty, we can replace the formula by

$$\bigwedge_j S^{n_j} 0 < u_j.$$

Otherwise, we form

$$\left(\bigwedge_{i,j} S^{n_j+1} t_i < S^{m_i} u_j \land \bigwedge_j S^{n_j} 0 < u_j \right) \land \bigwedge_j S^{n_j} 0 < u_j.$$
Natural Numbers with Successor and Less-Than

Corollary

$Cn A_L$ is complete.

Proof

As before, given a sentence σ, we can find a quantifier-free sentence τ which we can then evaluate to true or false.

Corollary

$Cn A_L = Th N_L$

Proof

We have $Cn A_L \subseteq Th N_L$, $Cn A_L$ is complete, and $Th N_L$ is satisfiable.

Corollary

$Th N_L$ is decidable.

Proof

$Th N_L$ is complete and axiomatizable. Also, quantifier elimination gives an explicit decision procedure.
Corollary

A subset of \mathcal{N} is definable in \mathcal{N}_L iff it is either finite or has finite complement.

Proof

Exercise.

Corollary

The addition relation $\{\langle m, n, p \rangle \mid m + n = p\}$ is not definable in \mathcal{N}_L.

Proof

If we could define addition, we could define the set of even natural numbers: $\exists x \; x + x = y$. But this set is neither finite nor has finite complement.
Presburger Arithmetic

Now, suppose we add the addition symbol, $+$, to our language, and consider the standard model $\mathcal{N}_A = (\mathcal{N}; 0, S, <, +)$.

We state the following results without proof.

Theorem

Presburger arithmetic is decidable.

A set D of natural numbers is **periodic** if there exists some positive p such that $n \in D$ iff $n + p \in D$. D is **eventually periodic** iff there exists positive numbers M and p such that if $n > M$, then $n \in D$ iff $n + p \in D$.

Theorem

A set of natural numbers is definable in \mathcal{N}_A iff it is eventually periodic.

Corollary

The multiplication relation $\{ \langle m, n, p \rangle \mid p \in \mathcal{N} \land m \times n = p \}$ is not definable in \mathcal{N}_A.