Sipser text, no. 5.1 (2nd edition), 5.1 (1st edition). A string $\langle G_1, G_2 \rangle$ in this language represents two CFGs G_1 and G_2 that generate the same language.

Hint: Assume for a contradiction that there is a decision TM R for EQ_{CFG}, and use it to build a decision TM S for ALL_{CFG}, which is a contradiction, as we showed in class that there is no such TM S.

2. Show that $ALL_{TM} = \{ \langle M \rangle \mid M \text{ is a TM that accepts all strings in its input alphabet} \}$ is undecidable.

Hint: Use a construction similar to Theorem 5.2 which shows that E_{TM} is undecidable.

3. Show that $ZERO_{TM} = \{ \langle M \rangle \mid M \text{ is a TM with input alphabet } \{0, 1\} \text{ that accepts input 0} \}$ is undecidable.

Hint: Again, given a decision TM R for $ZERO_{TM}$, build a TM S that decides A_{TM}. The approach of Theorem 5.2 is helpful. That is, S first builds (computes a description of) a TM \tilde{M}_y that does something appropriate. Then S simulates R on input \tilde{M}_y.
