Greedy Algorithms

Example: The Line Breaking Problem

- Given a sequence of words
- Form a paragraph, breaking lines as necessary
- Assumptions:
 - fixed width spacing
 - need at least one space between words
 - words have lengths l_1, \ldots, l_n, and lines have length B, with each $l_i \leq B$
 - the l_i’s and B already include a “trailing space character”
A solution is a sequence \((p_1, p_2, \ldots, p_k)\), meaning that \(p_i\) words go on the \(i\)th line, for \(i = 1, \ldots, k\)

Different ways of measuring the “cost” of a solution

One simple cost metric: \# of lines \((= k)\)

A “greedy” strategy: choose \(p_1\) maximal such that words 1, \ldots, \(p_1\) fit on first line, then choose \(p_2\) maximal such that words \(p_1 + 1, \ldots, p_1 + p_2\) fit on second line, and so on . . .

Running time: \(O(n)\)

Claim: This greedy strategy minimizes the number of lines
Proof of claim. Prove by induction on k the statement:

- if the greedy algorithm finds an k-line solution, then there is no solution with $< k$ lines

$k = 1$: clear

$k > 1$:

- Suppose greedy algorithm finds an k-line solution (p_1, \ldots, p_k)
- Consider another solution $(q_1, \ldots, q_{k'})$
- We must have $q_1 \leq p_1$, since p_1 was chosen as large as possible by the greedy algorithm
• Modify the solution \((q_1, \ldots, q_{k'})\), moving \(p_1 - q_1\) words from the second line to the first

• This yields a solution of length \(k'' \leq k' - 1\) to the problem instance \((\ell_{p_1+1}, \ldots, \ell_n)\)

• However, \((p_2, \ldots, p_k)\) is a greedy solution to this problem instance

• By induction, \(k - 1 \leq k'' \leq k' - 1\), and so \(k \leq k'\) QED
Different cost functions may not allow a greedy algorithm

- “1 norm” — sum of extra spaces on all but the last line
 - greedy algorithm also works here
- “max norm” — maximum of extra spaces on all but last line
 - greedy algorithm does not work here
We can minimize the max-norm cost using dynamic programming

For $i = 1 \ldots n$, define $C(i) =$ minimum max-norm cost to format l_i, \ldots, l_n

For $i = 1 \ldots n$ and $j = i \ldots n$, let $S_{ij} := \sum_{t=i}^{j} l_t$

For $i = 1 \ldots n$, we have

$$C(i) = \begin{cases}
0 & \text{if } S_{in} \leq B \\
\min_{i \leq j < n} \left\{ \max \left(B - S_{ij}, C(j + 1) \right) \right\} & \text{o/w}
\end{cases}$$
Subproblem graph:

Number of nodes = $O(n)$
Number of edges per node = $O(n)$
Running time = $O(n^2)$
Example: Huffman Encoding Problem

Let w_1, \ldots, w_n be non-negative weights.

Let T be a binary tree, with each w_i labeling some leaf of depth d_i.

Define $\text{Cost}(T) := \sum_i w_i d_i$.

Problem: given w_1, \ldots, w_n, find a minimal cost T.

Without loss of generality, we may assume T is a full binary tree, i.e., each non-leaf has two children.
Application: optimal prefix-free binary encoding

- w_i represents probability of symbol σ_i
- path in tree represents a bit string encoding
- Cost(T) is expected encoding length
- prefix-free property allows for unambiguous parsing of strings

Example: $\Pr[A] = \Pr[B] = \Pr[C] = 1/13$, $\Pr[D] = 10/13$. $A \Rightarrow 000$, $B \Rightarrow 001$, $C \Rightarrow 01$, $D \Rightarrow 1$
For a tree T, define its *weight* to be the sum of weights of its leaves

Greedy Algorithm:

- Start with a forest of n leaves
- Repeat $n - 1$ times:
 - Take two trees T_1, T_2 in the forest of least weight, and join them:

Implement using a heap. Running time: $O(n \log n)$
Theorem. This greedy algorithm produces a least-cost tree.

Lemma 1. Let T be a full binary tree with weights $w(\nu)$ assigned to leaves ν. Suppose ν_1, ν_2 are leaves of smallest weight. We can construct a new tree T' from T such that

1. the leaves of T' and T are the same,
2. ν_1 and ν_2 are siblings in T', and
3. $\text{Cost}(T') \leq \text{Cost}(T)$.

Proof of Lemma 1. Assume \(\nu_1, \nu_2 \) not siblings in \(T \)

Let \(d_i := \text{depth of } \nu_i \text{ in } T \) for \(i = 1, 2 \)

Assume \(d_1 \geq d_2 \) and let \(\Delta := d_1 - d_2 \)

Moving \(\nu_2 \) down *increases* cost by \(\Delta \cdot w(\nu_2) \)

All leaves in \(T_1 \) have weight \(\geq w(\nu_2) \) (because \(\nu_1, \nu_2 \) have least weight), and so moving \(T_1 \) up *decreases* cost by at least \(\Delta \cdot w(\nu_2) \)
Lemma 2. Let T be a full binary tree with weights $w(\nu)$ assigned to leaves ν. Suppose ν_1, ν_2 are leaves that are siblings in T with parent ν_3, and that we create a new tree \tilde{T} by deleting ν_1 and ν_2 and set $w(\nu_3) := w(\nu_1) + w(\nu_2)$:

Then $\text{Cost}(\tilde{T}) = \text{Cost}(T) - w(\nu_1) - w(\nu_2)$.

Proof. Let $d =$ depth of ν_3 in T

ν_1 and ν_2 contribute $(d + 1)(w(\nu_1) + w(\nu_2))$ to $\text{Cost}(T)$

ν_3 contributes $d(w(\nu_1) + w(\nu_2))$ to $\text{Cost}(\tilde{T})$
Proof of Theorem.

Induction on n

If $n \leq 2$, clear; assume $n > 2$ and assume theorem holds for all values less than n

Let T be the tree produced by the greedy algorithm, and let X be any tree with same weights as T

Want to show: $\text{Cost}(T) \leq \text{Cost}(X)$

Consider the first step of the greedy algorithm, which joined two leaves v_1, v_2 of smallest weight

v_1 and v_2 are siblings in T
Apply Lemma 1 to \(X \), obtaining a new tree \(X' \) in which \(\nu_1 \) and \(\nu_2 \) are siblings, and
\[
\text{Cost}(X') \leq \text{Cost}(X)
\]

Apply Lemma 2 to both \(T \) and \(X' \), removing \(\nu_1 \) and \(\nu_2 \), obtaining trees \(\tilde{T} \) and \(\tilde{X}' \) such that
\[
\text{Cost}(\tilde{T}) = \text{Cost}(T) - w(\nu_1) - w(\nu_2)
\]
\[
\text{Cost}(\tilde{X}') = \text{Cost}(X') - w(\nu_1) - w(\nu_2)
\]

\(\tilde{T} \) is also a tree that would be produced the greedy algorithm, and so by induction,
\[
\text{Cost}(\tilde{T}) \leq \text{Cost}(\tilde{X}')
\]

It follows that
\[
\text{Cost}(T) \leq \text{Cost}(X') \leq \text{Cost}(X) \quad \text{QED}
\]