Turing machines

Informally:

- A one-way infinite tape of finite memory cells
- A read/write tape head
- A finite program, with instructions:
 - read/write one tape cell
 - move tape head one cell left or right
 - branch, according to contents of current tape cell
 - halt
- Program’s input is placed on the tape initially
- Program’s output is the contents of the tape upon termination
Formal definition of a Turing Machine (TM):

- An input/output alphabet Σ (usually $\{0, 1\}$)
- A tape alphabet Γ, where $\Sigma \subseteq \Gamma$, and $_ \in \Gamma \setminus \Sigma$ is a special “blank symbol”
- A finite set of states Q, with two distinguished states q_0 (the start state) and q_{halt} (the halt state)
- A transition function
 $$\delta : (Q \setminus q_{\text{halt}}) \times \Gamma \to \Gamma \times \{\text{Left, Right}\} \times Q$$
- Semantics: if $\delta(q, a) = (b, d, r)$, then when the machine is in state q and the tape head is reading a, the machine writes b to the tape, moves the tape one cell in direction d, and goes to state r
Details of execution:

- The tape consists of cells c_1, c_2, c_3, \ldots (think of c_1 as being on the left end of the tape)
- If the input is $x = x_1 \cdots x_n$, then the tape is initialized so that $c_i = x_i$ for $i = 1 \ldots n$, and $c_i = __$ for $i > n$
- The tape head is initially scanning c_1
- When the machine halts, and m is the least $m \geq 0$ such that $c_{m+1} \notin \Sigma$, the output is defined to be the string $c_1 \cdots c_m$
A basic fact:

- Any TM can be simulated on a RAM
- Any RAM can be simulated on a TM

Definitions of computability, decidability, acceptance, and recognition carry over verbatim from RAM’s to TM’s

Consequence:

- A language is decidable/recursively enumerable on a RAM

 \iff

 it is decidable/recursively enumerable on a TM
Turing Machine Configurations:

Encode as a string:
\[C = a_1 a_2 q a_3 \cdots a_m \]
Define a “follows” relation on configuration encodings:

\[C \vdash C' \]

A computation on input \(x \) can be represented as

\[\#C_0\#C_1\#\cdots\#C_k\# , \]

where

- \(C_0 = q_0x \) — initial configuration with input \(x \)
- \(C_{i-1} \vdash C_i \) for \(i = 1 \ldots k \)
- \(C_k \in \Gamma^* q_{\text{halt}} \Gamma^* \) — a “halting configuration”
Undecidable problems related to context-free languages

Some decidable languages (G is a CFG, x ∈ Σ*)

- \(A_{\text{CFG}} := \{ \langle G, x \rangle : x \in L(G) \} \)
- \(E_{\text{CFG}} := \{ \langle G \rangle : L(G) = \emptyset \} \)

An undecidable language:

- \(EQ_{\text{CFG}} := \{ \langle G_1, G_2 \rangle : L(G_1) = L(G_2) \} \)
- \(ALL_{\text{CFG}} := \{ \langle G \rangle : L(G) = \Sigma^* \} \)

Reduction: \(ALL_{\text{CFG}} \leq EQ_{\text{CFG}} \)
To show ALL_{CFG} is undecidable, we give a reduction $\text{HALT}_{\text{TM}} \leq \text{ALL}_{\text{CFG}}$, where

$$\text{HALT}_{\text{TM}} := \{(M, x) : M \text{ is a TM that halts on input } x\}$$

We want to map (M, x) to $(G_{M,x})$, with the property that

- if M halts on input x, then $L(G_{M,x}) \not\subseteq \Sigma^*$
- if M does not halt on input x, then $L(G_{M,x}) = \Sigma^*$
The reduction:

- Define $L_{M,x}$ to be the language of halting computations of M on input x:

 \[
 \#C_0\#C_1\#\cdots\#C_k\#
 \]

- $L_{M,x}$ is either empty, or contains a single string

- For a string w, define w^{-1} to be its reverse

- For a string $\alpha = \#\alpha_0\#\alpha_1\#\cdots\#\alpha_k\#$, define its "twist"

 \[
 \tilde{\alpha} := \#\alpha_0\#\alpha_1^{-1}\#\cdots\#\alpha_i^{(-1)^i}\#\cdots\#\alpha_k^{(-1)^k}\#
 \]

- Define $L'_{M,x} := \{\tilde{\alpha} : \alpha \in L_{M,x}\}$
The reduction (cont’d):

- If M accepts x, then $L'_{M,x} \subseteq \Sigma^*$
- If M does not accept x, then $L'_{M,x} = \Sigma^*$
- The goal is now to show that $L'_{M,x}$ is context free, and that we can effectively construct a grammar for $L'_{M,x}$, given $\langle M, x \rangle$
The reduction (cont’d):

- $\overline{L}_{M,x}'$ is the union of several regular languages
 - all strings that do not start and end with #
 - all strings of the form $\#\alpha_0\#\cdots$, where α_0 is not the initial configuration of M on input x
 - all strings that do not contain q_{halt}

and a context-free language:

- all strings of the form $\#\alpha_0\#\alpha_1^{-1}\#\cdots\#\alpha_k^{(-1)^k}\#$, with $k \geq 1$, such that for some $i = 1 \ldots k$, we have $\alpha_{i-1} \not\vdash \alpha_i$

PDA: use nondeterminism to guess i, and use the stack to compare α_{i-1} and α_i
Other applications of the same idea:

- Define a 2PDA to be a push-down automaton with 2 stacks
 - The language acceptance problem for 2PDA’s is undecidable

 Idea: we can simulate a TM using two stacks

- One can define a notion of context-sensitive grammars, where the rewrite rules may have several symbols on LHS

 - The language acceptance problem for these types of grammars is undecidable

 Idea: we can use the rewrite rules to simulate a TM