Decidability

- Recall: Random Access Machine (RAM)
 - program is a finite sequence of instructions
 - input and output is a bit string, written on special tapes
 - random access to an unbounded number of memory cells
- We say that a RAM M halts on input $x \in \{0, 1\}^*$ if given x as input, M halts after a finite number of steps
 - no restrictions are made on the running time, the number of memory cells used, or the sizes of the numbers stored in memory
- We say that a RAM M halts on all inputs if it halts on all inputs $x \in \{0, 1\}^*$
• We say a function $f : \{0, 1\}^* \to \{0, 1\}^*$ is *computable* if there is a RAM that computes f (in particular, M must halt on all inputs).

• If a RAM M computes the characteristic function of a language L, then we say M *decides* L.

• We say that a language $L \subseteq \{0, 1\}^*$ is *decidable* if some RAM decides it.
 – Analogous to P

• Simple fact: L is decidable $\iff \overline{L}$ is decidable.
We say that a language L is \emph{recursively enumerable} if there is a decidable language L' such that

$$\forall x \in \{0, 1\}^* : x \in L \iff \exists w \in \{0, 1\}^* : \langle x, w \rangle \in L'$$

- Sipser: Turing recognizable
- Analogous to \textbf{NP}
Existence of undecidable languages:

- There are only countably many RAM’s
- There are uncountably many languages
- \(\therefore \) undecidable languages exist

A specific undecidable language:

- We say RAM \(M \) accepts a string \(x \) if \(M \) halts and outputs 1 on input \(x \)

\[A_{RAM} := \left\{ \langle M, x \rangle : M \text{ is a RAM}, \quad x \in \{0, 1\}^*, \quad M \text{ accepts } x \right\} \]
Theorem: A_{RAM} is undecidable

Proof:

- Suppose it were decidable
- Let H be a RAM that decides it:

 \[
 H(\langle M, x \rangle) = \begin{cases}
 1 & \text{if } M \text{ accepts } x \\
 0 & \text{otherwise}
 \end{cases}
 \]

- Construct a new RAM D as follows:

 on input $\langle M \rangle$:

 output $1 - H(\langle M, \langle M \rangle \rangle)$

- D always halts and always outputs 0 or 1
- $D(\langle D \rangle) = 1 - H(\langle D, \langle D \rangle \rangle) = 1 - D(\langle D \rangle)$
Theorem: A_{RAM} is recursively enumerable

Proof:

- A “witness” w for $\langle M, x \rangle$ is a bound on the running time of M on input x
- To verify a witness w
 - just run M on input x for up to w steps
 - if M halts and outputs 1 within w steps, then output 1, and output 0 otherwise
Theorem:

• a language L is decidable \iff both L and \overline{L} are recursively enumerable

Proof:

• \Rightarrow: clear

• \Leftarrow:
 - let W_1 be the set of witnesses for $x \in L$, and let W_2 be the set of witnesses for $x \in \overline{L}$
 - enumerate all strings $\{0, 1\}^*$, testing for membership in W_1 and W_2
 - eventually, one string will be in either W_1 or W_2

Corollary: $\overline{A_{RAM}}$ is not recursively enumerable
Recursive enumerability: other characterizations

Some terminology:

- We say M recognizes L if:
 - $x \in L \implies M$ accepts x
 - $x \notin L \implies M$ does not accept x (it may halt and output something $\neq 1$, or it may go into an infinite loop)

Notation: $L(M) = \{x : M$ accepts $x\}$
Theorem:

- L is recursively enumerable \iff some RAM recognizes L

Proof:

- \Rightarrow build a RAM that enumerates all possible witness, testing each
- \Leftarrow: the witness is a bound on the running time
Enumerators:

- Let $c : \{0, 1\}^* \rightarrow \{0, 1\}^*$ be some simple, prefix-free encoding function
- We say M enumerates L, if the following holds:
 - if we allow M to run (with no input) forever, it writes to its output tape

 $$c(x_1)c(x_2)c(x_3)\cdots,$$

 and $L = \{c(x_i) : i = 1, 2, 3, \ldots \}$
Theorem:

- L is recursively enumerable \iff some RAM enumerates L

Proof:

- \Rightarrow: build a RAM that enumerates all pairs (x, w), and outputs $c(x)$ if w is a witness for x
- \Leftarrow: the witness is a bound on the running time needed to generate $c(x)$
Reducibility

Reductions:

- Suppose L_1, L_2 are languages
- We say L_1 is reducible to L_2, if there is a computable function $f : \{0, 1\}^* \rightarrow \{0, 1\}^*$, such that $x \in L_1 \iff f(x) \in L_2$
- Notation: $L_1 \leq L_2$

Simple facts:

- If $L_1 \leq L_2$ and L_2 is decidable, then L_1 is decidable
- If $L_1 \leq L_2$ and L_1 is undecidable, then L_2 is undecidable
More undecidable problems

Theorem:

- The language

\[\text{HALT}_{\text{RAM}} := \{ \langle M, x \rangle : \text{RAM } M \text{ halts on input } x \} \]

is undecidable

Proof:

- Reduction: \(A_{\text{RAM}} \leq \text{HALT}_{\text{RAM}} \)
- Map \(\langle M, x \rangle \) to \(\langle M', x \rangle \), where \(M' \) is the RAM:
 - on input \(x' \):
 - run \(M \) on input \(x' \) until it halts
 - if and when \(M \) halts with an output \(y \):
 - if \(y = 1 \) then halt
 - else go into an infinite loop
Theorem:

- The language
 \[E_{\text{RAM}} := \{ \langle M \rangle : M \text{ is a RAM and } L(M) = \emptyset \} \]
 is undecidable

Proof:

- Reduction: \(A_{\text{RAM}} \leq \overline{E_{\text{RAM}}} \)
- Map \(\langle M, x \rangle \) to \(\langle M' \rangle \), where \(M' \) is the RAM:
 on input \(x' \):

 if \(x' = x \) // \(x \) is “hardwired” into \(M' \)

 then run \(M \) on input \(x \)

 else output 0 and halt

- Verify: \(M \) accepts \(x \) \(\iff \) \(L(M') \neq \emptyset \)
Theorem:

- The language

\[
EQ_{\text{RAM}} := \{ \langle M_1, M_2 \rangle : M_1, M_2 \text{ are RAM’s and } L(M_1) = L(M_2) \}
\]

is undecidable

Proof:

- Reduction: \(E_{\text{RAM}} \leq EQ_{\text{RAM}} \)
- Map \(\langle M \rangle \) to \(\langle M, M_0 \rangle \), where \(M_0 \) is the RAM:

 on input \(x \):

 output 0 and halt
Theorem:

- The language

\[REG_{\text{RAM}} := \{ \langle M \rangle : L(M) \text{ is regular} \} \]

is undecidable

Proof:

- Reduction: \(A_{\text{RAM}} \leq REG_{\text{RAM}} \)
- Map \(\langle M, x \rangle \) to \(\langle M' \rangle \), where \(M' \) is the RAM:

 on input \(x' \):

 - if \(x' \in \{0^n1^n : n \geq 0 \} \)

 then output 1 and halt

 - else run \(M \) on input \(x \)

- Observe: if \(M \) accepts \(x \), then \(L(M') = \{0, 1\}^* \)

 otherwise, \(L(M') = \{0^n1^n \} \)
Theorem (Rice’s Theorem):

- Any non-trivial property of the language accepted by a RAM is undecidable
- More precisely: let \(P \) be a language consisting of RAM descriptions \(\langle M \rangle \), such that
 - \(P \) is non-trivial: \(P \) contains some, but not all descriptions
 - membership in \(P \) depends only on the language accepted by the RAM:
 \[
 L(M_1) = L(M_2) \Rightarrow (\langle M_1 \rangle \in P \iff \langle M_2 \rangle \in P)
 \]
- Then \(P \) is undecidable
Proof:

- Let M_0 be a RAM with $L(M_0) = \emptyset$
- We may assume that $\langle M_0 \rangle \not\in P$ (otherwise, use \overline{P} in place of P)
- Let M_1 be any RAM with $\langle M_1 \rangle \in P$
- Reduction: $A_{\text{RAM}} \leq P$
Proof (cont’d):

- Map \(\langle M, x \rangle \) to \(M' \), where \(M' \) is the RAM:

 on input \(x' \):

 run \(M \) on input \(x \)

 if and when \(M \) halts with an output \(y \):

 if \(y = 1 \) then

 run \(M_1 \) on input \(x' \)

 else

 output 0 and halt

- if \(M \) accepts \(x \) then \(L(M') = L(M_1) \), and \(\langle M_1 \rangle \in P \Rightarrow \langle M' \rangle \in P \)

- if \(M \) does not accept \(x \), then \(L(M') = \emptyset = L(M_0) \), and \(\langle M_0 \rangle \notin P \Rightarrow \langle M' \rangle \notin P \)