Regular Languages

Strings and Languages:

- Σ – an “alphabet,” i.e., a finite set of symbols
- Σ^* – set of all finite strings over Σ
- ε – the empty string
- for $x \in \Sigma^*$, $|x|$ denotes the length of x
- for $x, y \in \Sigma^*$, xy denotes their concatenation
- a language is a subset of Σ^*

2
Finite automata

Finite automaton (general form):

- A *finite automaton (FA)* is a directed graph \((Q, E)\), where each edge \(e \in E\) has an associated set of labels \(\ell(e)\)
- Each \(\ell(e)\) is a finite subset of \(\Sigma^*\)
- Vertices are called *states*
- Edges are called *transitions*
- There is also a special state \(q_0 \in Q\) called the *start state*, and a set of \(F \subseteq Q\) called the set of *accept sets*
- Notation: \(M = (\Sigma, Q, E, \ell, q_0, F)\)
The language of M:

- Let $x \in \Sigma^*$, and $r, s \in Q$
- Write $M : r \xrightarrow{x} s$ if there is a path
 \[
 \langle r_0, r_1, \ldots, r_k \rangle
 \]
 in the graph (Q, E), starting at r, ending at s, along with labels
 \[
 x_1 \in \ell(r_0, r_1), \ldots, x_k \in \ell(r_{k-1}, r_k)
 \]
 such that $x = x_1 \cdots x_k$
- We say M accepts x if $M : q_0 \xrightarrow{x} s$ for some $s \in F$
- The language of M is
 \[
 L(M) := \{ x \in \Sigma^* : M \text{ accepts } x \} \]
Example:

\[\Sigma = \{0, 1\} \]

\[L(M) = \{ x \in \{0, 1\}^* : x \text{ contains either 0001 or 11 as a substring} \} \]
Regular languages:
- A language is called *regular* if it is accepted by some FA

Equivalent FA’s:
- FA’s M_1 and M_2 are called equivalent if $L(M_1) = L(M_2)$

NFA’s:
- A *nondeterministic finite automata (NFA)* is a FA where all labels are either ε or $\alpha \in \Sigma$
- Any FA can be easily converted to an NFA
Converting a general FA to an NFA:
Deterministic FA’s:

- A FA M is called deterministic if
 - every label is of the form $a \in \Sigma$,
 - for every $q \in Q$, and $a \in \Sigma$, there exists a unique $r \in Q$ such that $(q, r) \in E$ and $a \in \ell(q, r)$
 - This defines a function
 $$\delta : Q \times \Sigma \rightarrow Q$$
 $$(q, a) \mapsto r$$
 called the transition function
 - In this case, M is called a deterministic finite automata (DFA), and is traditionally denoted $M = (\Sigma, Q, \delta, q_0, F)$
Theorem:
- Every FA has an equivalent DFA

Proof:
- Let $M = (\Sigma, Q, E, l, q_0, F)$
- We may assume labels are ε or $a \in \Sigma$
- Define the DFA $D = (\Sigma, Q', \delta, q'_0, F')$, where
 - Q' := power set of Q
 - $q'_0 := \{ q \in Q : M : q_0 \xrightarrow{\varepsilon} q \}$
 - for each $R \subseteq Q$ and $a \in \Sigma$:
 $$\delta(R, a) := \{ q \in Q : M : r \xrightarrow{a} q \text{ for some } r \in R \}$$
 - $F' := \{ R \subseteq Q : R \cap F \neq \emptyset \}$
Theorem:

- regular languages are closed under union, intersection, and complement

Proof:

- Let $M = (\Sigma, Q, \delta, q_0, F)$ and $M' = (\Sigma, Q', \delta' q_0', F')$ be two DFA’s

DFA for $\Sigma^* \setminus L(M)$:

$$\bar{M} := (\Sigma, Q, \delta, q_0, Q \setminus F)$$
Proof (cont’d):

- Define a DFA with states $Q \times Q'$ and transition function:

 $\left(((q, q'), a) \mapsto (\delta(q, a), \delta'(q', a)) \right)$

- To get $L(M) \cup L(M')$, choose final states

 $\{ ((q, q') : q \in F \text{ or } q' \in F' \}$

- To get $L(M) \cap L(M')$, choose final states

 $\{ ((q, q') : q \in F \text{ and } q' \in F' \}$
Regular expressions

Recursive definition of regular expressions (RE’s):

- Atoms: ϵ, \emptyset, $a \in \Sigma$
- Recursive rule: if E_1 and E_2 are regular expressions, then so are (E_1E_2), $(E_1 \mid E_2)$, and $(E_1)^*$

The language of a RE:

- $L(\epsilon) = \{ \epsilon \}$, $L(\emptyset) = \emptyset$, and $L(a) = \{ a \}$
- $L(E_1E_2) = L(E_1)L(E_2)$
 $= \{ x_1x_2 : x_1 \in L(E_1), x_2 \in L(E_2) \}$
- $L(E_1 \mid E_2) = L(E_1) \cup L(E_2)$
- $L(E_1)^* = \bigcup_{k=0}^{\infty} L(E_1)^k$
Example:

\[(0 \mid 1)^*(0001 \mid 11)(0 \mid 1)^*\]

Short-hand notation:

- \(\Sigma\) denotes \((a_1 \mid \cdots \mid a_m)\), where \(\Sigma = \{a_1, \ldots, a_m\}\)
- \(E^+\) denotes \(EE^*\)
- \(E^n\) denotes \(E \cdots E\) \((n\ \text{times})\)
Theorem:

- A language is regular if and only if it is the language of some regular expression

Proof:

- \(\iff \): given a regular expression, recursively construct an equivalent FA
Proof (cont’d):

- \(\implies \): given a FA \(M \), build an equivalent RE
- Idea: Floyd-Warshall
- Number states \(1, \ldots, n \)
- Assume initial state is 1 and that \(n \) is the unique final state
- For \(k = 0, \ldots, n \), recursively define RE’s \(E_{ij}^{(k)} \)
 such that \(L(E_{ij}^{(k)}) \) consists of all strings which drive \(M \) from state \(i \) to state \(j \) via intermediate states in \(\{1, \ldots, k\} \)
- \(L(M) = L(E_{1n}^{(n)}) \)
Proof (cont’d):

- More simplifying assumptions:
 - for each state i, there is an edge (i, i) and $\varepsilon \in \ell(i, i)$
 - if there is no edge (i, j), define $\ell(i, j) := \emptyset$

- Recursive construction of $E_{ij}^{(k)}$:
 - $E_{ij}^{(0)} = \text{regular expression for } \ell(i, j)$
 - for $k > 0$:
 \[
 E_{ij}^{(k)} = E_{ij}^{(k-1)} \mid E_{ik}^{(k-1)} \left(E_{kk}^{(k-1)} \right)^* E_{kj}^{(k-1)}
 \]
The pumping lemma: a tool to prove that a language is not regular

Theorem (Pumping Lemma):

1. Let A be a regular language
2. $\exists p \in \mathbb{Z}_{>0} \ \forall s \in A$ with $|s| \geq p$ $\exists x, y, z \in \Sigma^*$:
 0. $s = xyz$
 1. $|xy| \leq p$
 2. $|y| > 0$
 3. $xy^kz \in A$ for all $k \in \mathbb{Z}_{k \geq 0}$
Proof:

- Let M be a DFA recognizing A
- Let $p = \#$ of states in M
- Consider any $s \in A$, where $s = s_1 \cdots s_n$ (each $s_i \in \Sigma$) and $n \geq p$
- Since $s \in A$, s drives M through a path $\langle q_0, \ldots, q_n \rangle$, starting at the start state q_0 and ending at a final state q_n
- Since $|s| \geq p$, this path must contain a cycle
- In particular, there are indices $0 \leq i < j \leq p$ such that $q_i = q_j$
- Set $x := s_1 \cdots s_i$, $y := s_{i+1} \cdots s_j$, $z := s_{j+1} \cdots s_n$
Pumping Lemma Proof:

$q_0 \xrightarrow{x} q_i = q_j \xrightarrow{y} q_n$

$q_0 \xrightarrow{y} \cdots \xrightarrow{z} q_n$
Example:

- \(A = \{0^n \# 0^n : n \geq 0\} \)
- Use pumping lemma to show \(A \) is not regular
- Proof by contradiction: suppose \(A \) were regular
- Let \(p = \) pumping length
- Choose \(s = 0^p \# 0^p \)

\[
\begin{array}{ccccccccc}
0 & 0 & \ldots & 0 & \# & 0 & 0 & \ldots & 0 \\
\hline
x & y & z
\end{array}
\]

- Neither \(xz \) nor \(xy^2z \) are in \(A \)
- \(\Rightarrow \Leftarrow \)
Example:

- $B = \{x \# y : x, y \in \{0, 1\}^*, x \neq y\}$
- Use closure properties and previous example to show that B is not regular
- Proof by contradiction: assume B is regular
- $\overline{B} \cap (0^* \# 0^*)$ is also regular
- But $\overline{B} \cap (0^* \# 0^*) = A$ (in previous example)
- A is not regular
- $\Rightarrow \Leftarrow$