NP Completeness (cont’d)

Reductions:
- Let \(L_1 \) and \(L_2 \) be languages
- We say that \(L_1 \) is poly-time reducible to \(L_2 \), (notation: \(L_1 \leq_P L_2 \)) if there exists a poly-time computable function \(f : \{0, 1\}^* \to \{0, 1\}^* \) such that:
 \[
 \forall x \in \{0, 1\}^* : x \in L_1 \iff f(x) \in L_2
 \]

Definition of \(\text{NP} \):
- \(\text{NP} \) is the class of languages \(L \) such that for some \(L' \in \text{P} \) and some constants \(a, b, c \):
 \[
 \forall x \in \{0, 1\}^* : x \in L \iff \exists w \in \{0, 1\}^{a|x|^b+c} : \langle x, w \rangle \in L'
 \]
Definition of NP-completeness:

- A language L is called NP-complete if
 1. $L \in \textbf{NP}$, and
 2. L is NP-hard: for all $L' \in \textbf{NP}$: $L' \leq_P L$

Formalizing computation:

- Define an idealized model of computation
- RAM: Random Access Machine
- Reads bits from an input tape
- Writes bits to an output tape
- Random access memory
- Simple instruction set
Random Access Machine (RAM)

Random Access Memory

Input Tape

Control Unit

Output Tape
Instruction Set:

- **add** 17, 18, 20 # \(m[20] \leftarrow m[17] + m[18] \)
- **sub** 17, 18, 20 # \(m[20] \leftarrow m[17] - m[18] \)
- **mul** 17, 18, 20 # \(m[20] \leftarrow m[17] \cdot m[18] \)
- **div** 17, 18, 20 # \(m[20] \leftarrow \lfloor m[17]/m[18] \rfloor \)
- **ldc** 17, 20 # \(m[20] \leftarrow 17 \)
- **ldd** 17, 20 # \(m[20] \leftarrow m[17] \)
- **ldi** 17, 20 # \(m[20] \leftarrow m[m[17]] \)
- **sti** 17, 20 # \(m[m[20]] \leftarrow m[17] \)
- **b** 100 # branch to 100
- **bpos** 17, 100 # branch to 100 if \(m[17] > 0 \)
- **bz** 17, 100 # branch to 100 if \(m[17] = 0 \)
- **halt**
- **read** 20 # \(m[20] \leftarrow \text{read bit} \)
- **write** 17 # write \(m[17] \)
Polynomial time:

- $n =$ input length
- Requirement: Number of instructions executed $\leq an^b + c$ for constants a, b, c
- Requirement: Number in each memory cell $\leq a'n^{b'} + c'$ in absolute value for constants a', b', c'
- Implication: highest memory cell addressed is $\leq a'n^{b'} + c''$ for constant c''
Circuit Satisfiability (CSAT) a first NP-complete problem

Instance:

- A Boolean circuit C:
 - inputs x_1, \ldots, x_m
 - AND, OR, NOT gates
 - AND, OR take 2 inputs
 - unrestricted “fan out”
 - A single bit output

Question:

- Is there an assignment to the inputs x_1, \ldots, x_m such that $C(x_1, \ldots, x_m) = 1$?
Linearized representation:

\[
\begin{align*}
\ x_4 & \leftarrow x_1 \land x_2 \\
\ x_5 & \leftarrow \overline{x_1} \\
\ x_6 & \leftarrow x_3 \lor x_4 \\
\ x_7 & \leftarrow x_4 \lor x_5 \\
\ x_8 & \leftarrow x_6 \land x_7
\end{align*}
\]
Proof that CSAT is NP-complete

- Clearly $CSAT \in \text{NP}$: a witness is just a satisfying assignment

- Need to show that $CSAT$ is NP-hard, i.e., $L \leq_P CSAT$ for all $L \in \text{NP}$

- Let $L \in \text{NP}$

- We know there is a language $L' \in \text{P}$ and constants a, b, c such that $\forall x \in \{0, 1\}^* :$

 $$x \in L \iff \exists w \in \{0, 1\}^{a|x|^b+c} : \langle x, w \rangle \in L'$$

- Let M' be the polynomial time RAM that recognizes L'
Proof (cont’d):

- The current configuration of M' is $\alpha = (m, p, r, y, z)$, where
 - m: contents of all memory cells
 - p: program Counter
 - r: position of input “read head”
 - y: contents of input tape
 - z: contents of output tape

- There is a function f_{next} that maps a configuration α to the successor configuration $f_{\text{next}}(\alpha)$

- Configurations can be encoded as polynomial-sized bit strings

- The function f_{next} can be realized by a polynomial-sized circuit C_{next}
input: w

\[\langle x, \cdot \rangle \]

``pairing circuit''

x is ``hardwired''

\[\alpha_0 \]

\[C_{\text{next}} \]

\[\alpha_1 \]

\[C_{\text{next}} \]

\[\vdots \]

\[\alpha_t \]

output
Satisfiability (SAT)

Instance:
- A Boolean *formula* ϕ:
 - variables x_1, \ldots, x_m
 - Operators \lor, \land, \lnot
 - Parentheses

Question:
- Is there an assignment to the variables x_1, \ldots, x_m such that $\phi(x_1, \ldots, x_m) = 1$?

Formulas are essentially circuits with fan-out restricted to 1
A simple reduction: $CSAT \leq_p SAT$

- Let “$\phi_1 \iff \phi_2$” be shorthand for “$(\phi_1 \land \phi_2) \lor (\bar{\phi}_1 \land \bar{\phi}_2)$”

Circuit C:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Expression</th>
<th>Formula ϕ:</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_4</td>
<td>$x_1 \land x_2$</td>
<td>$(x_4 \iff (x_1 \land x_2)) \land$</td>
</tr>
<tr>
<td>x_5</td>
<td>\bar{x}_1</td>
<td>$(x_5 \iff (\bar{x}_1)) \land$</td>
</tr>
<tr>
<td>x_6</td>
<td>$x_3 \lor x_4$</td>
<td>$(x_6 \iff (x_3 \lor x_4)) \land$</td>
</tr>
<tr>
<td>x_7</td>
<td>$x_4 \lor x_5$</td>
<td>$(x_7 \iff (x_4 \lor x_5)) \land$</td>
</tr>
<tr>
<td>x_8</td>
<td>$x_6 \land x_7$</td>
<td>$(x_8 \iff (x_6 \land x_7)) \land$</td>
</tr>
</tbody>
</table>

- It is clear that C is satisfiable $\iff \phi$ is satisfiable
- Note: C and ϕ are not logically equivalent
3SAT: a special case of SAT

Conjunctive Normal Form:

- a conjunction (\wedge) of clauses
- each clause is a disjunction (\vee) of literals
- each literal is a variable x or its complement \overline{x}

Examples:

$$x \wedge y, \quad \overline{x} \wedge (y \vee z), \quad (x \vee y \vee \overline{z}) \wedge (w \vee \overline{x} \vee z)$$

A special form: 3-CNF

- Each clause consists of 3 distinct literals
- $3SAT := \{ \langle \phi \rangle : \phi \text{ is a satisfiable } 3\text{-CNF formula} \}$
Fact: every formula ψ in 1–3 variables can be rewritten as a 3-CNF formula (with at most 8 clauses)

- Add extra variables to make # of variables = 3
- Write down truth table for $\overline{\psi}$
- Read off conjunctive normal form formula from truth table
- Negate this formula, using DeMorgan’s law to get 3-CNF
Proof that 3SAT is NP-hard

- Reduction: CSAT \leq_p 3SAT
- Let $N(\psi)$ be a 3-CNF formula representing ψ

Circuit C:

- $x_4 \leftarrow x_1 \land x_2$
- $x_5 \leftarrow \overline{x_1}$
- $x_6 \leftarrow x_3 \lor x_4$
- $x_7 \leftarrow x_4 \lor x_5$
- $x_8 \leftarrow x_6 \land x_7$

Formula ϕ:

- $N(x_4 \iff (x_1 \land x_2)) \land$
- $N(x_5 \iff (\overline{x_1})) \land$
- $N(x_6 \iff (x_3 \lor x_4)) \land$
- $N(x_7 \iff (x_4 \lor x_5)) \land$
- $N(x_8 \iff (x_6 \land x_7)) \land$
- $N(x_8)$
CLIQUE: An NP-complete graph problem

Definition:

- Let $G = (V, E)$ be an undirected graph
- A *clique* is a set $C \subseteq V$ such that $(u, v) \in E$ for all $u, v \in C$ such that $u \neq v$

The *CLIQUE* problem:

- **Instance:**
 - A pair (G, k), where G is an undirected graph and k is a positive integer
- **Question:**
 - Is there a clique in G of size $\geq k$?
Proof that $CLIQUE$ is NP-complete

- $CLIQUE \in \textbf{NP}$: clear, as the clique itself is a witness

- Need to show $CLIQUE$ is NP-hard

- Reduction: $3SAT \leq_p CLIQUE$

- Let ϕ be a 3-CNF formula:
 \[\phi = (a_1 \lor b_1 \lor c_1) \land \cdots \land (a_k \lor b_k \lor c_k) \]

- Goal: construct a graph G such that ϕ is satisfiable $\iff G$ has a clique of size k
Proof (cont’d):

- \(G \) has a \(3k \) vertices, one for each literal
- There is an edge between two vertices unless
 1. the corresponding literals belong to the same clause
 2. the corresponding literals are contradictory (i.e., \(x \) and \(\overline{x} \))

Example:
\[
\phi = (x_1 \lor x_2 \lor x_3) \land (x_1 \lor \overline{x}_2 \lor x_3) \land (\overline{x}_1 \lor \overline{x}_2 \lor x_3)
\]
Proof (cont’d):

* Need to show

\[\phi \text{ is satisfiable } \iff G \text{ has a clique of size } k \]

* \(\Rightarrow \):

 - suppose \(\phi \) is satisfiable

 - choose a satisfying assignment

 - for each clause, pick one true literal

 - this gives a \(k \)-clique (verify: every pair of vertices is connected)
Proof (cont’d):

• \Leftarrow:

 – suppose G has a k-clique C

 – by Rule 1, each triple can have at most one element in C

 – so C has exactly one element from each triple

 – by Rule 2, we can make a corresponding truth assignment that satisfies ϕ