Honors Algorithms
G22.3520-001 Fall 2006

Lecture 16
Read: CLRS 23
Minimum Spanning Trees

The problem:

- Input: a weighted, connected, undirected graph $G = (V, E)$

 Each edge $e \in E$ has a weight $w(e) \in \mathbb{R}$

- Output: a subset $T \subseteq E$ such that

 - (V, T) is a tree (acyclic and connected)

 - $w(T) := \sum_{e \in T} w(e)$ is minimized
Theorem. Let $G = (V, E)$ be an undirected graph. The following are equivalent.

1. G is a tree
2. every pair of vertices in G is connected by a single path, which is simple
3. G is connected, but removing any edge makes it unconnected
4. G is acyclic, but adding any edge makes it cyclic
5. G is connected and $|E| = |V| - 1$
6. G is acyclic and $|E| = |V| - 1$
A generic MST algorithm

- Suppose $A \subseteq E$ is contained in some MST

 An edge $e \in E$ is called **safe for** A if $A \cup \{e\}$ is also contained in some MST

- Generic MST algorithm:

 $A \leftarrow \emptyset$

 repeat $|V| - 1$ times:

 find $e \in E \setminus A$ that is safe for A

 $A \leftarrow A \cup \{e\}$
Recognizing safe edges

- **Definition:**
 - A cut C is a partition $(S, V \setminus S)$, where $\emptyset \subsetneq S \subsetneq V$
 - An edge $e \in E$ crosses a cut $C = (S, V \setminus S)$ if one endpoint of e lies in S, and the other lies in $V \setminus S$
 - A cut C respects $A \subseteq E$ if no edge in A crosses C
Cut Lemma:

- Let $G = (V, E)$ be a connected, undirected graph with weights $w : E \rightarrow \mathbb{R}$

- Let $A \subseteq E$ be a subset of some MST

- Let C be a cut that respects A

- Let $e \in E$ be an edge of smallest weight that crosses C

- Then: e is safe for A
• **Proof:**

 – Let T be an MST containing A
 – If $e \in T$, we’re done, so assume $e \notin T$
 – Goal: construct an MST $T' \supseteq A \cup \{e\}$
 – Let $e = \{u, v\}$
 – Consider the unique path p from u to v in T (which is simple)
 – Since e crosses the cut C, there must be some e' along p that crosses C
 – Set $T' := (T \setminus \{e'\}) \cup \{e\}$
 – Want to show: T' is an MST that includes A
• Proof (cont’d):

- (V, T') is a tree
 \[|T'| = |V| - 1 \] and (V, T') is connected
- $T' \supseteq A$
 C respects A, e' crosses $C \Rightarrow e' \not\in A$
- T' is an MST
 Both e and e' cross $C \Rightarrow w(e) \leq w(e')$
- QED
Kruskal’s MST algorithm

\(\text{MST-Kruskal}(G, w) \)

\[A \leftarrow \emptyset \]
for each \(v \in V \) do: \(\text{MakeSet}(v) \)
// union-find
sort edges \(E \) in order of increasing weight:
\[e_1, \ldots, e_m \]
for \(i \leftarrow 1 \) to \(m \) do
let \(e_i = \{u, v\} \)
\(\tilde{u} \leftarrow \text{Find}(u) \)
\(\tilde{v} \leftarrow \text{Find}(v) \)
if \(\tilde{u} \neq \tilde{v} \) then
\[A \leftarrow A \cup \{e_i\} \]
\(\text{Union}(\tilde{u}, \tilde{v}) \)
return \(A \)
Correctness of Kruskal

- Loop invariants:
 - (V, A) is a forest of trees
 - each processed edge connects two nodes in the same tree

- Upon termination: (V, A) is a tree
 - follows from loop invariant and connectedness of G
When we add an edge $e = \{u, v\}$:

- Define the cut is $C = (S, V \setminus S)$, where S is the set of nodes comprising u’s current tree
- C respects A
- Because edges are sorted, e has minimum weight among all nodes crossing C

- Cut Lemma $\Rightarrow e$ is safe for A
Running time of Kruskal

- Sorting $|E|$ edges: $O(|E| \log |E|)$, which is $O(|E| \log |V|)$
- $2|E|$ finds and $|V| - 1$ unions on $|V|$ items: $O(|E| \log^* |V|)$
- Total time: $O(|E| \log |V|)$
Prim’s MST algorithm

Idea:
- Start with an arbitrary node r, and “grow” an MST from r, one edge at a time
- We use two arrays, d and π, indexed by V. Let v be a node that is not in the current tree.
 - If there is an edge connecting v to the current tree:
 * $d[v]$ is the weight of a minimum weight edge $\{u, v\}$ that connects v to the tree
 * $\pi[v] = u$
 v is called a “fringe” node
 - Otherwise, $d[v] = \infty$
Idea (cont’d):

- At each step of the algorithm:
 - choose a “fringe” node u with minimum $d[u]$ value
 - add u and the edge $\{u, \pi[u]\}$ to the tree
 - for each node v adjacent to u, update $d[v]$ and $\pi[v]$ appropriately:

 * if v is not a tree vertex, and $w(\{u, v\}) < d[v]$, then set $d[v] \leftarrow w(\{u, v\})$ and $\pi[v] \leftarrow u$
Correctness follows from Cut Lemma
Implementation of Prim

- Fringe nodes are stored in a priority queue
- Priority queue supports Decrease (as well as Insert and ExtractMin):
 - $|V|$ Insert’s
 - $|V|$ ExtractMin’s
 - $|E|$ Decrease’s
Priority Queue Implementations:

- Simple list:
 - *Insert, Decrease*: $O(1)$, *ExtractMin*: $O(|V|)$
 - Total: $O(|V|^2 + |E|)$, which is $O(|V|^2)$

- Binary Heap:
 - *Insert, Decrease, ExtractMin*: $O(\log |V|)$
 - Total: $O(|E| \log |V|)$

- Fibonacci Heap:
 - *Insert, Decrease*: $O(1)$,
 ExtractMin: $O(\log |V|)$
 - Total: $O(|V| \log |V| + |E|)$