Graphs

\[G = (V, E), \quad V = \text{set of nodes (a.k.a., vertices)} \quad E = \text{set of edges} \]

\(G \) is usually assumed to be \textit{directed}, so that an edge is a pair of nodes \((u, \nu)\) (graphically, \(u \rightarrow \nu\))

If \((u, \nu) \in E\), let’s call \(\nu\) a \textit{successor} of \(u\), and \(u\) a \textit{predecessor} of \(\nu\)

\(\text{Succ}(u) := \text{set of all successors of } u \)

An undirected graph is just a special case of a directed graph, where \((u, \nu) \in E \Rightarrow (\nu, u) \in E\)

One usually assumes an undirected graph contains no \textit{self loops}, i.e., edges \((u, u)\)
Representations

- **Sparse**: an array of adjacency lists
 - an array A indexed by V, where $A[u]$ is a linked list containing all successors of u
 - size: $O(|V| + |E|)$
 - this will be the “default”

- **Dense**: an boolean array A indexed by $V \times V$, where $A[u, v] = true$ iff $(u, v) \in E$
 - size: $O(|V|^2)$
Breadth first search (BFS)

Input: a graph $G = (V, E)$, and a node $s \in V$

Outputs:

- the “shortest distance” array d, indexed by V, so that $d[v] =$ length of shortest path from s to v
- a “breadth first search” tree T, represented as an array π indexed by V

 $\pi[v] = u$ means u is v’s parent in T

the root T is s, and paths in T are shortest paths in G
Algorithm $BFS(G, s)$:

for each $v \in V$

$\text{Color}[v] \leftarrow \text{white} \quad \text{// undiscovered}$

$d[v] \leftarrow \infty$, $\pi[v] \leftarrow \text{Nil}$

$\text{Color}[s] \leftarrow \text{gray} \quad \text{// discovered}$

$d[s] \leftarrow 0$, $\pi[s] \leftarrow \text{Nil}$

$Q \leftarrow \text{NewQueue}() \quad \text{// a FIFO queue}$

$Q.\text{enqueue}(s)$

while not $Q.\text{empty}()$ do

$u \leftarrow Q.\text{dequeue}()$

for each $v \in \text{Succ}(u)$ do

if $\text{Color}[v] = \text{white}$ then

$\text{Color}[v] \leftarrow \text{gray} \quad \text{// discovered}$

$d[v] \leftarrow d[u] + 1$, $\pi[v] \leftarrow u$

$Q.\text{enqueue}(v)$

$\text{Color}[u] \leftarrow \text{black} \quad \text{// finished}$
Example:

BFS Tree:
Invariant:

- At the beginning of each loop iteration, Q contains all nodes that are colored gray.

Running time:

- Each node enqueued at most once (by coloring)
- Each node dequeued at most
- Each adjacency list scanned at most once
- \therefore Running time $= O(|V| + |E|)$
Correctness

Notation: computed distance, $\delta(s, v) = \text{length of shortest path from } s \text{ to } v$

Shortest Path Lemma. if $\delta(s, v) = m > 0$, then v is the successor of some node u with $\delta(s, u) = m - 1$

- **Proof.** Consider a shortest path from s to v:

 $$s \sim u \rightarrow v$$

 \[m-1\]

- The path $s \sim u$ must be a shortest path from s to u (otherwise, we could find an even shorter path to v). QED
Theorem. Algorithm BFS eventually discovers every node reachable from \(s \)

Prove by induction on \(m \):

\[
\text{for all } v \in V, \text{ if } \delta(s, v) = m, \text{ then BFS discovers } m
\]

\(m = 0 \): clear; \(m > 0 \):

- Suppose \(v \in V \) with \(\delta(s, v) = m \)
- By Shortest Path Lemma, \(v \) has a predecessor \(u \) with \(\delta(s, u) = m - 1 \)
- By induction, BFS discovered \(u \), and placed \(u \) in \(Q \)
- When BFS removes \(u \) from \(Q \), it discovers \(v \) (or finds that it was already discovered)
Theorem. BFS correctly computes $d[v] = \delta(s, v)$ for all $v \in V$

Let v_0, v_1, \ldots be the nodes listed in the order they are removed from Q

We can partition the execution of BFS into *epochs* $0, 1, 2, \ldots$

\[
\underbrace{v_0, \ldots, v_{j_0}}_{\text{epoch 0}} \quad \underbrace{v_{j_0+1}, \ldots, v_{j_1}}_{\text{epoch 1}} \ldots
\]

A new epoch starts at v_j if $\delta(s, v_j) \neq \delta(s, v_{j-1})$
Prove by induction on i:

At the beginning of epoch i, Q contains precisely all nodes v such that $\delta(s, v) = i$, and $\delta[v] = i$ for all these nodes.

$i = 0$: clear

Assume for $0, \ldots, i$ and prove for $i + 1$:

- During epoch i, by the lemma, and the induction hypothesis, all nodes v with $\delta(s, v) = i + 1$ will be discovered and placed at the end of Q during epoch i.
- Epoch i ends when all nodes v with $\delta(s, v) = i$ have been removed from Q.

QED. One can also easily show that T is correct.
Depth First Search (DFS)

Algorithm $DFS(G)$:

for each $v \in V$ do: $Color[v] \leftarrow \text{white}$, $\pi[v] \leftarrow \text{Nil}$

$\text{time} \leftarrow 0$

for each $v \in V$ do

if $Color[v] = \text{white}$ then $RecDFS(v)$

Algorithm $RecDFS(u)$:

$Color[u] \leftarrow \text{gray}$

$d[u] \leftarrow ++\text{time}$ // discovery time

for each $v \in Succ(u)$ do:

if $Color[v] = \text{white}$ then

$\pi[v] \leftarrow u$, $RecDFS(v)$

$Color[u] \leftarrow \text{black}$

$f[u] \leftarrow ++\text{time}$ // finish time
DFS Forest:

- **Tree edge**
- **Forward edge**
- **Back edge**
- **Cross edge**
Invariant:

- At the beginning of each loop iteration, the gray nodes are the ancestors of \(u \) in the DFS forest, and these are also the nodes currently on the “recursion stack”

Running Time Analysis:

- Each node is discovered once
- Each edge is traversed once
- Running time = \(O(|V| + |E|) \)
For \(u, v \in V \), “\(u \sqsubseteq v \)” means that \(u \) is a descendent of \(v \) in the DFS forest (possibly \(u = v \)), and “\(u \sqsubset v \)” means \(u \) is a proper descendent of \(v \) (so \(u \neq v \))

Parenthesis Theorem. For all \(u, v \in V \), exactly one of the following holds:

1. \([d[u], f[u]] \cap [d[v], f[v]] = \emptyset\), \(u \not\sqsubseteq v \), and \(v \not\sqsubseteq u \)
2. \([d[u], f[u]] \subseteq [d[v], f[v]]\), and \(u \sqsubseteq v \)
3. \([d[u], f[u]] \supseteq [d[v], f[v]]\), and \(u \sqsupseteq v \)
Classification of edge $u \rightarrow v$

- **Tree edge:** in the DFS forest ($u \cong v$)
 - v was **white** when $u \rightarrow v$ was explored;
 $$(d[u] < d[v] < f[v] < f[u])$$
- **Back edge:** $u \sqsubseteq v$ (includes self loops)
 - v was **gray** when $u \rightarrow v$ was explored
 $$(d[v] \leq d[u] < f[u] \leq f[v])$$
- **Forward edge:** a non-tree edge, $u \cong v$
 - v was **black** when $u \rightarrow v$ was explored, but **white** when u was discovered
 $$(d[u] < d[v] < f[v] < f[u])$$
- **Cross edge:** $u \not\sqsubseteq v$ and $u \not\sqsupseteq v$
 - v was **black** when $u \rightarrow v$ was explored, and **black** when u was discovered;
 $$(d[v] < f[v] < d[u] < f[u])$$
 - points “into the past” (right to left)
u discovered

u finished

Some Back, Forward, and Cross edges
White Path Theorem. Let $u, \nu \in V$.

\[u \equiv \nu \iff \begin{cases} \text{at the time } u \text{ is discovered,} \\ \text{there is a path from } u \text{ to } \nu \text{ consisting only of white nodes} \end{cases} \]

(⇒) Assume $u \equiv \nu$
White Path Theorem. Let $u, v \in V$.

$$u \supseteq v \iff \begin{cases} \text{at the time } u \text{ is discovered, there is a path from } u \text{ to } v \text{ consisting only of white nodes} \\
\end{cases}$$

(\Leftarrow) Let $u = v_0 \rightarrow v_1 \rightarrow \cdots \rightarrow v_k = v$ be the white path

Claim: $u \supseteq v_i$ for all i. Assume not, and let i be minimal such that $u \not\supseteq v_i \text{ (} i > 0 \text{)} \Rightarrow \Leftarrow$
Topological Sorting

Suppose $G = (V, E)$ is a DAG (Directed Acyclic Graph)

A topological sort of G is an ordering of the vertices

V_1, V_2, \ldots, V_n

such that $(v_i, v_j) \in E \Rightarrow i < j$

“all arrows go from left to right”

Algorithm TopSort:

- initialize an empty list
- Run DFS: When a node is painted black, insert it at the front of the list

So we output vertices on order of decreasing finishing time
Lemma. G has a cycle \iff DFS produces a back edge

- (\iff) A back edge trivially yields a cycle
(⇒) Suppose G has a cycle C of vertices, and let v be the first vertex discovered in C:

By the White Path Theorem, u is a descendent of v in the DFS forest.

∴ the edge $u \rightarrow v$ is a back edge.
Theorem. Algorithm TopSort is correct

- Let \((u, v) \in E\)
- We want to show \(f[v] < f[u]\)
- Cases:
 - \((u, v)\) is a tree edge: \(u \supseteq v\) and \(d[u] < d[v] < f[v] < f[u]\)
 - \((u, v)\) is a back edge: impossible, since \(G\) is acyclic
 - \((u, v)\) is a forward edge: \(u \supseteq v\) and \(d[u] < d[v] < f[v] < f[u]\)
 - \((u, v)\) is a cross edge: \(f[v] < d[u] < f[u]\)
- QED