Honors Algorithms
G22.3520-001 Fall 2006

Lecture 12
Read: CLRS 20, 21
Fibonacci Heaps — Review

- A list H of min-ordered trees
- Each node x has:
 - a value field
 - a pointer to a list of children
 - a child count
 - a parent pointer
 - a boolean field $mark[x]$ (initially $false$)
- $Min[H] :=$ pointer to node with minimum value (a root of one of the trees)
Potential Function

\[t(H) := \text{# of trees} \]
\[m(H) := \text{# or marked nodes} \]
\[\Phi(H) := t(H) + 2m(H) \]

Actually, we maintain a collection of heaps, and the “global” \(\Phi = \text{sum of the individual } \Phi \text{’s} \)

Maximum degree

- \(D(n) := \text{an upper bound on the degree (\# of children) of any node in an } n\text{-node Fibonacci heap} \)
If no *Decrease* or *Delete* operations are performed:

- all trees are binomial trees (although some trees may have the same size, and the trees are not sorted by size)
- \(D(n) \leq \log_2 n \)
- all nodes are unmarked
Create(): $c = 1, \Delta \Phi = 0 \Rightarrow \hat{c} = 1$

Insert(H, x): just append a new 1-item tree, and update $Min[H]$

\[
c = 1, \Delta \Phi = 1 \Rightarrow \hat{c} = 2
\]

FindMin(H): return $Min[H]$

\[
c = 1, \Delta \Phi = 0 \Rightarrow \hat{c} = 1
\]

$H \leftarrow \text{Union}(H_1, H_2)$: just concatenate the two lists of trees, and calculate $Min[H]$

\[
c = 1, \Delta \Phi = 0 \Rightarrow \hat{c} = 1
\]
ExtractMin(H):

- \(x \leftarrow \text{Min}[H] \)
- Update \(\text{Min}[H] \) by examining \(x \)'s children, and the roots of all the other trees in \(H \)
- Merge the trees rooted at the children of \(x \) with the other trees in \(H \)
 - consolidate trees so that no two have roots with the same degree
 - if no Decrease or Delete operations have been performed, the result is a binomial heap
- Amortized cost: \(\hat{c} = O(D(n)) \)

Still to do: Decrease and Delete
Structural changes to Fibonacci Heaps:

- Create/destroy a single-node tree
- Merge node x into node y:
 - x and y are roots of trees, with $\text{degree}[x] = \text{degree}[y]$
 - we make x a new child of y
- Cut node x:
 - x has a parent y
 - we detach x from y, making x the root of its own tree

These are the only structure-modifying operations we will use
Marking nodes:

- We will place “marks” on certain nodes.
- When a node is created, it is unmarked.
- Whenever a node is cut, any mark on it is removed.
 - the logic of $ExtractMin$ needs to be modified to deal with this.
 - does not increase the amortized cost of any operation discussed so far.
Operation $Decrease(H, x, v)$

- update $Min[H]$
- if min-heap property is violated then

 repeat

 $y \leftarrow parent[x]$

 (⋆) cut x

 $x \leftarrow y$

 until x is unmarked

 if x is not a root then

 (⋆⋆) mark x

• At line (*), \(y \) loses a child, and if \(y \) is not a root, then either

 – \(y \) is marked and will be cut in the next loop iteration, or

 – \(y \) is unmarked, and will be marked at line (**)

• Node “lifecycle”:

 – initially, node is a root

 – Gain/lose several children

 – Merge into another node

 – Lose (at most) one child

 – Cut, becoming a root again
Amortized cost of *Decrease*

Let $c = \# \text{ of loop iterations}$

Recall $\Phi(H) = t(H) + 2m(H)$, where $t(H) = \# \text{ of trees in } H$, and $m(H) = \# \text{ of marked nodes in } H$

$t(H)$ increases by c

$m(H)$ decreases by at least $c - 2$:

- each execution of (\ast), except possibly the first, removes a mark $\Rightarrow \Phi$ decreases by at least $c - 1$
- one mark may be added at line $(\ast \ast)$ $\Rightarrow \Phi$ may increase by 1

$\therefore \hat{c} = c + \Delta \Phi \leq c + (c - 2(c - 2)) = 4$
Implementation of $Delete(H, x)$

- $Decrease(H, x, -\infty)$, $ExtractMin(H)$
- $\hat{c} = O(D(n))$

Bounding $D(n)$

- Recall that $D(n)$ is an upper bound on the degree of any node in an n-node Fibonacci heap, and that the amortized cost of $ExtractMin$ is $O(D(n))$
- Without $Decrease$ and $Delete$, all trees are binomial trees, and $D(n) \leq \log_2 n$
- Even with $Decrease$ and $Delete$, we can still show that $D(n) = O(\log n)$
Lemma 1. Let x be a node in a Fibonacci heap, with $\text{degree}[x] = k$. Suppose y_1, \ldots, y_k are the children of x, listed in the order in which they were last merged into x. Then $\text{degree}[y_i] \geq i - 2$ for $i = 2 \ldots k$.

Proof. Let t_1 be the current time, and let t_0 be the point in time when y_i was last merged into x.

At time t_0, y_1, \ldots, y_{i-1} are already children of x (although x may have other children right now)
At time t_0, $\text{degree}[y_i] = \text{degree}[x] \geq i - 1$

Between time t_0 and t_1, y_i is not cut, and so y_i loses at most one child between time t_0 and t_1

\therefore at time t_1, $\text{degree}[y_i] \geq i - 2$

QED
Fibonacci numbers: $F_0 = 0$, $F_1 = 1$,
$F_{k+2} = F_k + F_{k+1}$

Facts:

- $F_{k+2} = 1 + \sum_{i=0}^{k} F_i$
- $F_{k+2} \geq \phi^k$, where $\phi = (1 + \sqrt{5})/2 \approx 1.618$ is a root of $x^2 = x + 1$

Lemma 2. Let x be any node in a Fibonacci heap,
let $k = degree[x]$, and let $n = \# of nodes in
the tree rooted at x. Then $n \geq F_{k+2}$.

Proof. Induction on n

$n = 1$: $k = 0$, $F_2 = 1$
$n > 1$: Let y_1, \ldots, y_k be the children of x, as in Lemma 1, let $d_i :=$ the degree of y_i, and let $n_i :=$ the size of the sub-tree rooted at y_i

\[
n = 1 + \sum_{i=1}^{k} n_i \geq 2 + \sum_{i=2}^{k} n_i
\]

\[\geq 2 + \sum_{i=2}^{k} F_{d_i + 2} \text{ (induction)}\]

\[\geq 2 + \sum_{i=2}^{k} F_i \text{ (Lemma 1, } F_i \text{ increasing)}\]

\[= 1 + \sum_{i=0}^{k} F_i = F_{k+2} \quad \text{QED}\]
Corollary. \(n \geq \phi^{D(n)} \)

Thus, \(D(n) \leq \log_{\phi}(n) \)

Putting it all together — for a Fibonacci heap:

- *Create, Insert, FindMin, and Union* take time \(O(1) \)
- *Decrease* takes amortized time \(O(1) \)
- *ExtractMin* and *Delete* take amortized time \(O(\log n) \)
Disjoint Set Operations

We want to maintain a collection of disjoint sets.

Each set is identified by one of its members, called the *representative* of the set.

Operations:

- *MakeSet*(\(x\)) – create a the singleton set \(\{x\}\)
- *Union*(\(x, y\)) – form the union of sets whose representatives are \(x\) and \(y\) (original sets are lost)
- *Find*(\(x\)) – find the representative of the set containing \(x\)
A simple approach:

- A set is implemented as a doubly linked list of nodes
- the representative is the left-most node in the list
- each node in the list contains a pointer to the representative
- the representative contains the length of the list, and a pointer to the right-most node
- *MakeSet* and *Find* — trivial, $O(1)$
- *Union*: concatenate lists Longest \parallel Shortest, and update pointers to representative in Shortest
Theorem. Any sequence of m operations, of which n are MakeSet, takes time $O(m + n \log n)$.

Proof. Want to show that total time spent updating representatives is $O(n \log n)$

Key observation: each time the representative pointer of a node is updated, the set in which it is contained at least doubles in size

∴ if a node’s representative pointer is updated k times, then $2^k \leq n \Rightarrow k \leq \log_2 n$

QED