Unity Program structure

program → Program program-name
 declare declare-section
 always always-section
 initially initially-section
 assign assign-section
 end

The *declare-section* declares variables and their types. The *always-section* gives names to expressions. Reference to these names within other expressions is interpreted as textual substitution. The *initially-section* specifies the initial values of variables.
Assignment Statement

\[
\text{assignment-statement} \quad \rightarrow \quad \text{assignment-component} \mid \{ \parallel \text{assignment-component}\}
\]

\[
\text{assignment-component} \quad \rightarrow \quad \text{enumerated-assignment} \mid \text{quantified-assignment}
\]

The \(\parallel\) separator separates between assignment components which are executed simultaneously.
Enumerated Assignment

\[
\begin{align*}
\text{enumerated-assignment} & \rightarrow \text{variable-list} := \text{expression-list} \\
\text{variable-list} & \rightarrow \text{variable}\{, \text{variable}\} \\
\text{expr-list} & \rightarrow \text{simple-expr-list} | \text{cond-expr-list} \\
\text{simple-expr-list} & \rightarrow \text{expr}\{, \text{expr}\} \\
\text{cond-expr-list} & \rightarrow \text{simple-expr-list} \text{ if } \text{boolean-expr} \\
& \quad \{\sim \text{simple-expr-list} \text{ if } \text{boolean-expr}\}
\end{align*}
\]

Examples:

- \(x, y := y, x\) — Exchange \(x\) and \(y\).
- \(x := y \text{ if } y \geq 0 \sim -y \text{ if } y \leq 0\) — same as \(x := |y|\).
A Computational Model

A fair transition system (FTS) $\mathcal{D} = \langle V, \Theta, T, J, C \rangle$ consists of:

- V – A finite set of typed state variables. A V-state s is an interpretation of V. We denote by $s[x]$ the value assigned to variable $x \in V$ by state s. Σ_V – the set of all V-states.

- Θ – An initial condition. A satisfiable assertion that characterizes the initial states.

- T – A set of transitions. Each transition $\tau \in T$ is associated with a transition relation, which is an assertion $\rho[\tau](V, V')$, referring to both unprimed (current) and primed (next) versions of the state variables. For example, $x' = x + 1$ corresponds to the assignment $x := x + 1$.

- $J \subseteq T$ – A subset of just (weakly fair) transitions. Each of these transitions must be taken infinitely many times if it is continuously enabled.

- $C \subseteq T$ – A subset of compassionate (strongly fair) transitions. Each of these transitions must be taken infinitely many times if it is enabled infinitely many times.
Some Definitions

State s' is defined to be a τ-successor of state s if $\langle s, s' \rangle \models \rho[\tau]$, where $\langle s, s' \rangle$ is a joint interpretation which interprets each unprimed variable x as $s[x]$ and each primed variable x' as $s'[x]$.

A transition τ is enabled on state s, written $s \models En[\tau]$, if s satisfies the assertion $\exists V'.\rho[\tau](V, V')$, implying that s has some τ-successor.

Let $\sigma : s_0, s_1, \ldots$ be an infinite set of states. We say that transition $\tau \in \mathcal{T}$ is enabled at position $j \geq 0$ if it is enabled on s_j, We say that τ is taken at position $j \geq 0$ if s_{j+1} is a τ-successor of s_j.

We define the total transition relation to be the disjunction

$$\rho : \bigvee_{\tau \in \mathcal{T}} \rho[\tau]$$
Computations

Let D be an FTS for which the above components have been identified. We define a computation of D to be an infinite sequence of states

$$\sigma : s_0, s_1, s_2, \ldots,$$

satisfying the following requirements:

- **Initiality**: s_0 is initial, i.e., $s_0 \models \Theta$.
- **Consecution**: For each $j = 0, 1, \ldots$, state s_{j+1} is a ρ-successor of the state s_j.
- **Justice**: For each $\tau \in J$, σ contains either infinitely many positions at which τ is disabled, or infinitely many positions at which τ is taken. Equivalently, if τ is continuously enabled from a certain position on, it must be taken infinitely many times in σ.
- **Compassion**: For each $\tau \in C$, if σ contains infinitely many positions at which τ is enabled, it must also contain infinitely many positions at which τ is taken.
Proof Rules: Proving Invariance

The following rule can be used (and is complete) for verifying invariance properties.

Rule INV

For an assertion φ,

I1. $\Theta \rightarrow \varphi$
I2. $\varphi \land \rho \rightarrow \varphi'$
I3. $\varphi \rightarrow p$

\[\square p \]

By premises I1 and I2, φ is an invariant of the system. That is, all reachable states satisfy φ. Since, by premise I3, φ implies p, it follows that p is also a D-invariant.
Possible Domains for the Ranking Function

We define a well-founded domain to be a pair \((\mathcal{A}, \succ)\) consisting of a domain \(\mathcal{A}\) and an ordering relation \(\succ\) over \(\mathcal{A}\) such that there does not exist an infinitely descending sequence

\[a_0 \succ a_1 \succ \cdots \]

of \(\mathcal{A}\)-elements.

For example, the natural numbers with the \(>\) ordering forms a well-founded domain, denoted \((\mathbb{N}, >)\). When there is no danger of confusion, we refer to the well-founded domain \((\mathcal{A}, \succ)\), simply as \(\mathcal{A}\). For elements \(a, b \in \mathcal{A}\), we write \(a \succeq b\) if either \(a > b\) or \(a = b\).
Composite Well-Founded Domains

Given two well-founded domains \((A_1, \succ_1)\) and \((A_2, \succ_2)\), we construct a composite well-founded domain.

The lexicographic product \(A_1 \times \text{lex} \ A_2\) is the well-founded domain \((A, \succ)\), where \(A = A_1 \times A_2\) and
\[
(a_1, a_2) \succ \text{lex} (b_1, b_2) \iff (a_1 \succ_1 b_1) \lor (a_1 = b_1 \land a_2 \succ_2 b_2)
\]

Claim 1. If both \((A_1, \succ_1)\) and \((A_2, \succ_2)\) are well-founded, then so is \(A_1 \times \text{lex} A_2\).

Proof It is sufficient to show that \(A_1 \times \text{lex} A_2\) is well-founded.
Assume to the contrary, that there exists an infinitely descending sequence
\[
(a_1, b_1) \succ \text{lex} (a_2, b_2) \succ \text{lex} \cdots
\]
From the definition of \(\succ \text{lex}\) it follows that the sequence of first pair members satisfies \(a_1 \succeq_1 a_2 \succeq_1 \cdots\). Since \(A_1\) is well founded, it follows that there exists some position \(k\) such that \(a_k = a_{k+1} = \cdots\). Therefore, the sequence \(b_k \succ_2 b_{k+1} \succ_2 \cdots\) must be infinitely descending, contradicting the well-foundedness of \(A_2\). ☐
Rule WELL

For a well-founded domain \((A, \succ)\),
Helpfulness function \(h : J \mapsto \Sigma \mapsto \text{boolean}\),
assertions \(p, q\),
and ranking function \(\delta : \Sigma \mapsto A\)

W1. \(p \land \varphi \Rightarrow q \lor \bigvee_{\tau \in J} h[\tau]\)

For each \(\tau \in J\)

W2. \(h[\tau] \land \rho \Rightarrow (h[\tau] \land \delta = \delta') \lor q' \lor \left(\delta \succ \delta' \land \bigvee_{t \in J} h[t]'
ight)\)

W3. \(h[\tau] \land \rho[\tau] \Rightarrow q' \lor \left(\delta \succ \delta' \land \bigvee_{t \in J} h[t]'
ight)\)

W4. \(h[\tau] \Rightarrow En[\tau]\)

\(p \Rightarrow \Diamond q\)
Soundness of Rule **WELL**

Claim 2. Rule **WELL** is sound for proving the response property $p \Rightarrow \Diamond q$.

Proof Assume that the premises of rule **WELL** are valid. Let $\sigma : s_0, s_1, \ldots$ be a computation of D and let p hold at position j. We have to show that there exists a position $k \geq j$ such that q holds at position k.

Assume to the contrary, that no position beyond j satisfies q. By premise W1, state s_j must satisfy $h[\tau]$, for some $\tau \in J$. Let us denote by τ_j the transition τ such that $h[\tau]$ holds at state s_j, and by $d_j \in A$ the value of δ at state s_j. By premise W2, the successor state s_{j+1} must also satisfy $h[\tau]$, for some $\tau \in J$. Denote this transition by τ_{j+1}. In this way we proceed to establish an infinite sequence of transitions $\tau_j, \tau_{j+1}, \ldots$ where, for each $k \geq j$, $\tau_k \in J$ and $s_k \models h[\tau_k]$. Let us denote by d_j, d_{j+1}, \ldots the sequence of values of the ranking function at the respective states. By premises W2 and W3, the sequence $d_j \succeq d_{j+1} \succeq \cdots$ is non-increasing. Since this is an infinite non-increasing sequence over a well-founded domain, there must exist an index n, such that $d_n = d_{n+1} = \cdots$, and consequently (due to W2) $\tau_n = \tau_{n+1} = \cdots$.

By premise W3, we can have $\tau_n = \tau_{n+1} = \cdots$ only if transition τ_n is never taken beyond position n. On the other hand, due to W4, transition τ_n is continuously
enabled beyond position n. Thus, σ violates the justice requirement associated with transition τ_n, and therefore is not a computation, contrary to our original assumption.

We conclude that there must exists a position $k \geq j$ satisfying q. □
Unity Program as an FTS

Let

\[P : \text{Program declarations initially-section } a_1, \ldots, a_k \text{ end} \]

be a Unity program, where \(a_1, \ldots, a_k \) are the assignment statements. We construct an FTS \(D_P \) as follows:

- For the program variables \(V \), we take all the variables declared in the declaration section.
- For the initial condition \(\Theta \), we take the conjunction of all the constraints imposed in the initially section.
- For the transitions, we take \(T = \{a_1, \ldots, a_k\} \). For each assignment \(a_i \) we define its transition relation, as follows:
 - If \(a_i \) has the form \(\vec{u} := \vec{e} \), then \(\rho[a_i] : \vec{u}' = \vec{e} \land pres(V - \vec{u}) \).
 - If \(a_i \) has the form \(\vec{u} := (\vec{e}_1 \text{ if } p_1) \sim \cdots \sim (\vec{e}_m \text{ if } p_m) \), then \(\rho[a_i] \) is given by

\[
\left(p_1 \land \vec{u} = \vec{e}_1 \lor \cdots \lor p_m \land \vec{u} = \vec{e}_m \lor pres(\vec{u}) \land \bigwedge_{i=1}^{m} \neg p_i \right) \land pres(V - \vec{u})
\]

- \(J = T \) and \(C = \emptyset \).
Example: A GCD Program

Consider the following program

Program GCD
 declare a, b, x, y : natural
 initially x = a ∧ y = b ∧ a > 0 ∧ b > 0
 assign a1 : x := x − y if x > y
 □ a2 : y := y − x if y > x
end

Note that this program gives rise to two transitions. Their transition relations are respectively given by

ρ₁ : (x', y') = (x − y, y) ∧ x > y ∨ (x', y') = (x, y) ∧ x ≤ y
ρ₂ : (x', y') = (x, y − x) ∧ x < y ∨ (x', y') = (x, y) ∧ x ≥ y

We wish to prove for this program the properties:

Invariance FP ⇒ (x = gcd(a, b))
Response ◊ FP
An Auxiliary Rule for Partial Correctness

In many cases, the invariance property we wish to prove has the form $FP \Rightarrow p$. The following rule enables us to prove such properties directly.

Rule PAR-COR

For assertions φ and p,

P1. $\Theta \rightarrow \varphi$

P2. $\varphi \land \rho \rightarrow \varphi'$

P3. $\left(\bigwedge_{\tau \in T} \rho[\tau](V, V) \right) \land \varphi(V) \rightarrow p(V)$

\[FP \Rightarrow p \]
Proving $FP \Rightarrow (x = \gcd(a, b))$

As the auxiliary inductive assertion we pick

$$\varphi : (\gcd(x, y) = \gcd(a, b)) \land x > 0 \land y > 0.$$

This gives rise to the following premises:

\begin{align*}
P1. & \quad x = a \land y = b \land a > 0 \land b > 0 \quad \rightarrow \quad (\gcd(x, y) = \gcd(a, b)) \land x > 0 \land y > 0 \\
P2_1. & \quad (\gcd(x, y) = \gcd(a, b)) \land x > 0 \land y > 0 \land (x' = (x > y) \ ? \ (x - y) : x) \quad \rightarrow \\
& \quad (\gcd(x', y) = \gcd(a, b)) \land x' > 0 \land y > 0
\end{align*}
Optimized Versions of Rules

In view of the special structure of Unity programs, it is possible to derive a specialized form of the main rules. For an assignment of the form

\[a : \vec{u} := (\vec{e}_1 \text{ if } p_1) \sim \cdots \sim (\vec{e}_m \text{ if } p_m), \]

we refer to \(\vec{u} := \vec{e}_i \text{ if } p_i \), \(i = 1, \ldots, m \) as the cases of assignment \(a \). An unconditional assignment \(\vec{u} := \vec{e} \) is considered to have a single case which is the assignment itself. We often may take a conjunction or disjunction over all cases within an assignment, or over all cases within the program.

For a case \(\kappa \), given by \(\vec{u}_\kappa := \vec{e}_\kappa \text{ if } p_\kappa \), we define the transition relation:

\[\rho[\kappa] : p_\kappa \land \vec{u}'_\kappa = \vec{e}_\kappa \land \pres(V - \vec{u}_\kappa) \]

For the case that \(\kappa \) corresponds to a unconditional statement, we take \(p_\kappa = 1 \) (True).

In the following slides, we will reconsider the various rules and present an optimized version for them.
Optimized Version of \text{INV}

The optimized versions of rule \text{INV} is given as follows:

\begin{center}
\begin{tabular}{|c|}
\hline
\textbf{Rule INV} \\
For an assertion φ, \\
I1. $\Theta \rightarrow \varphi$ \\
I2. For all cases $\kappa \in P$: $\varphi \land \rho[\kappa] \rightarrow \varphi'$ \\
I3. $\varphi \rightarrow p$ \\
\hline
\end{tabular}
\end{center}

Note that premise P2 has to be checked separately for each case $\kappa \in P$. In particular, we do not take into account the case that an assertion does not modify the state. This is because such cases certainly preserve the validity of φ.
Optimized Version of Rule PAR-COR

Rule PAR-COR
For assertions φ and p,

P1. $\Theta \rightarrow \varphi$

P2. For all cases $\kappa \in P$: $\varphi \land \rho[\kappa] \rightarrow \varphi'$

P3. $\varphi(V) \land \left(\bigwedge_{\kappa \in P} (p_\kappa(V) \rightarrow \vec{u}_\kappa = \vec{e}_\kappa(V)) \right) \rightarrow p(V)$

\[FP \Rightarrow p \]

In addition to distribution of premise P2 across the various cases, this version contains an optimized version of premise P3. According to this version the fixed point FP is characterized by the conjunction $\bigwedge_{\kappa \in P} (p_\kappa(V) \rightarrow \vec{u}_\kappa = \vec{e}_\kappa(V))$. The conjunction claims that every case preserves the state.
An Optimized Version of Rule **WELL**

Rule WELL

For a well-founded domain \((A, \succ)\),

Helpfulness function

\[
h : J \mapsto \Sigma \mapsto \text{boolean},
\]

assertions

\[
p, q,
\]

a \(D\)-invariant

\[
\varphi,
\]

and ranking function

\[
\delta : \Sigma \mapsto A
\]

W1. \[
p \land \varphi \implies q \lor \bigvee_{\tau \in J} h[\tau]
\]

For each assignment \(a \in P\)

W2. \[
\forall \kappa \in P :: h[a] \land \rho[\kappa] \implies (h[a]' \land \delta = \delta') \lor q' \lor \left(\delta \succ \delta' \land \bigvee_{t \in J} h[t]'\right)
\]

W3. \[
\forall \kappa \in a :: h[a] \land \rho[\kappa] \implies q' \lor \left(\delta \succ \delta' \land \bigvee_{t \in J} h[t]'\right)
\]

W4. \[
h[a] \implies \bigvee_{\kappa \in a} p_{\kappa}
\]

\[
p \implies \Diamond q
\]