Last time we built PRBG’s based on OWP’s and hardcore bits. Before moving on, we’ll mention a couple of other results.

1 Goldreich-Levin

Theorem (Goldreich-Levin): Any OWP can be modified into a OWP that has a HCB.

Suppose that $f : \{0, 1\}^l \rightarrow \{0, 1\}^l$ is a 1-way permutation. Then we can define $F^\prime : \{0, 1\}^{2l} \rightarrow \{0, 1\}^{2l}$ such that $F^\prime(x||y) = F(x)||y$ ($|x| = |y| = l$) and $B(x||y) = \langle x, y \rangle \in \{0, 1\}$, where $\langle x, y \rangle = \oplus_{i=1}^l x_i y_i$ is the inner product over $GF(2)$ of x and y (and where $x = x_1 x_2 \ldots x_l, y = y_1 y_2 \ldots y_l$). Then we have

Theorem 1. F^\prime is a OWP and B is a hardcore bit.

For a proof, see notes by Ostrovsky.

2 One Way Functions and the HILL (Haastad Impagliazzo Levin Luby) Theorem

Consider a one-way function $F : X \rightarrow Y$. It is easy to compute F, but hard to compute F^{-1}. That is, for any efficient algorithm A,

$\Pr[x \leftarrow X, y \leftarrow F(x), x' \leftarrow A(y) \mid F(x') = y]$ is negligible.

The notion of a one way function is a weaker and more general notion than one-way permutation, so one way functions are more likely to exist. The notions of the hardcore bit and the goal of the Goldreich-Levin theorem apply to one-way functions. However, you cannot plug a OWF into Goldreich-Levin’s PRBG: that is, their proof for a OWP used the fact that it was a permutation in all the hybrid argument steps! Nevertheless, HILL showed that you can construct a PRBG from a OWF. It is a constructive proof, but it is impractical, and is omitted here.

Note though that the converse is easy – a PRBG is clearly a OWF. Assume $G : \{0, 1\}^l \rightarrow \{0, 1\}^{l'}$ with $l' >> l$. If we could break the OWF, we could compute the seed and determine whether the value is pseudorandom. This would yield a distinguisher, and contradict the assumption of a PRBG.
3 Pseudo-Random Functions (PRF’s)

We wish to find a family of functions where we select an individual function by selecting a key k that defines a function. The setup, given oracle access to A with adaptive queries and k fixed:

We define the security of a PRF in terms of an attack game between an adversary and a challenger. Adversary A talks to one of two oracles; One oracle is the PRF oracle for F_k (random key k). The other oracle is a random function oracle. Security is achieved is A can’t tell which oracle he’s talking to.

A random function oracle is an oracle for a function chosen at random from the set of all functions. It can be implemented as a random number generator which keeps a table of all answers already generated, and returns the already given answer for repeated queries, and otherwise returns a random element.

3.1 Applications

A few applications of PRFs are presented here.

3.1.1 Multi-Message Attacks

Multi-message attacks are described in HW3 problem 6. In this model, the same bit b is used for multiple encryptions.

Let the encryption be: $E(m) = (r, F_k(r) \oplus m)$, and the decryption be: $D(r, s) = F_k(r) \oplus s$. r is called a nonce – meaning it is used only once. r could be a counter, for example, but that would require that the sender maintain state, which doesn’t fit into our definitional framework, and could cause headaches if you accidentally reset r. So it is recommended to choose r at random, and l must be large enough to avoid collisions in choosing r’s.

We shall prove multi-message security via three games. Let ℓ be an upper bound on the number of decryption queries, b be the hidden bit, and \hat{b} the output of the adversary.

Game 0: Original attack game. $S_0 = \text{event that } b = \hat{b}$ in Game 0.

Game 1: Same as game 0, but if any nonce repeats, we halt the game. Let $S_1 = \text{event that } b = \hat{b}$ in Game 1.

We prove that these two games are indistinguishable, using the following lemma.

Lemma 2. Difference Lemma. If we have events E_0, E_1, F, with $E_0 \land \neg F \Leftrightarrow E_1 \land \neg F$, then $|Pr[E_0] - Pr[E_1]| \leq Pr[F]$.

L9-2
Let F be the event that a nonce repeats. If F does not occur, games 0 and 1 proceed identically. By construction, $S_0 \land \neg F \iff S_1 \land \neg F$. So by the difference lemma, $|\Pr[S_0] - \Pr[S_1]| \leq \Pr[F] = O(2^{-r})$.

Game 2: same as Game 1 but with the output of F_k replaced by uniformly distributed independent random bitstrings. Let $S_2 = \text{event that } b = \hat{b}$ in Game 2.

Now we are free to apply the definition of a pseudo-random function. Under the secure PRF assumption, we have $|\Pr[S_1] - \Pr[S_2]|$ is negligible, since otherwise we would have a distinguisher for the PRF. $\Pr[S_2] = \frac{1}{2}$, so we conclude that $|\Pr[S_0] - 1/2| \leq O(2^{-r}) + \nu$, where ν negligible, and security follows.

3.1.2 Message Authentication

The setup: Alice and Bob share a key k. Alice sends several messages m_1, m_2, \ldots to Bob. The adversary can eavesdrop and inject messages.

Suppose Alice sends $(m_i, t_i = F_k(m_i))$ to Bob. If F_k is a PRF, we have that F_k is also an unpredictable function. Unpredictability can be defined as follows: The adversary chooses x_1, \ldots, x_ℓ adaptively, obtaining $F_k(x_1), \ldots F_k(x_\ell)$. It is hard to compute $F_k(x)$ for $x \not\in \{x_1, \ldots, x_\ell\}$.

3.1.3 Interactive Identification Scheme.

The problem: Friend or Foe Identification.

The solution: A sends r, B sends $F_k(r)$. This is a simple challenge-response protocol.
3.2 PRF from PRBG

We show how to compute a PRF from a PRBG. Suppose \(G : \{0, 1\}^t \rightarrow \{0, 1\}^t \) is a secure PRBG. The keyspace is \(\{0, 1\}^t \), the input space is \(\{0, 1\}^t \), and \(t \) is a parameter. The output space is \(\{0, 1\}^t \).

We will define \(G \) by a pair of functions \((G_0, G_1)\): \(G(s) = G_0(s)||G_1(s) \).

If \(t = 1 \), we are done: a PRF with 1-bit input space is a PRBG.

Say the input to the PRF is \(x = x_1x_2\ldots x_t \), with \(x_i \in \{0, 1\} \), \(x \in \{0, 1\}^t \).

The key is \(k \in \{0, 1\}^t \).

We shall consider a binary tree with each link of the form: \(x \rightarrow G_0(x), G_1(x) \), with \(k \) at the root. That is, each level has applications of \(G_0, G_1 \) respectively. e.g. \(G_0(k) \rightarrow G_0(G_0(k)), G_1(G_0(k)) \rightarrow G_0(G_1(k)), G_1(G_1(k)) \) are the second-level nodes.

We evaluate \(F_k(x) \) by tracing out a path in this tree; the leaf that we reach is the output.
That is, \(F_k(x) = G_{x_t}(\ldots(G_{x_1}(k))\ldots) \).

Theorem 3. \(F_k(x) \) is a secure PRF.

Proof. We use the hybrid argument. We replace successive levels (innermost, \(x_1 \), upper level of tree first) with random. More formally, we have to do a randomized hybrid argument and one further observation to make the proof work. Define a sequence of hybrid, intermediate games:

- **Game 0:** the original game. \(t \) levels. \(k, k_0, k_1, k_{00}, \ldots \)
- **Game 1:** same except start with random \(k_0, k_1 \).

Suppose the adversary makes up to \(q \) queries. Each query is a path through the tree. As the game progresses we can trace out and remember the paths. This way, in game \(i \), we only need to generate at most \(q \) random values at level \(i \), rather than \(2^i \). So it is practical.

\[\ldots \]

- **Game \(t \):** We have random outputs.

 We compare game \(i \) to \(i + 1 \). Distinguishing between \(i \) and \(i + 1 \) gives a distinguisher for \(q \) copies of \(G \).

 Suppose \(A \) distinguishes the PRF from random. Run the following algorithm: choose \(i \) at random from \(\{1, \ldots, t\} \). Input: \(k_{10}, k_{11}, k_{20}, k_{21}, \ldots, k_{q0}, k_{q1} \). That is, these are either random or outputs of a PRF.

 Choose \(i \) and run game \(i \) using these values to seed level \(i \).
The advantage that A' has in distinguishing random from pseudorandom is equal to $(1/t)(\text{advantage that } A \text{ has in distinguishing game } i \text{ from game } i + 1)$. Then we plug in results from the homework 2 exercise which leads to another $1/q$ factor. Finally, we get an algorithm A'' that has a distinguishing advantage of $1/(qt)$ times the advantage of A. So F_k is secure if the PRBG is secure.

\(\square \)