1. Let $G = (V, E)$ be an undirected graph. Design and analyze an $O(|V|)$-time algorithm to determine if G is a tree.

2. Suppose the cost of a path is defined to be the maximum cost of any edge along the path, rather than the sum of the edge costs. Show how the Floyd-Warshall algorithm can be modified to handle this situation.

3. Let $G = (V, E)$ be a DAG with weighted edges, where the cost associated with each edge may be an arbitrary real number (possibly negative). Show how to find a path with maximum cost in G in time $O(|V| + |E|)$.

4. Consider the following divide-and-conquer algorithm that purports to find a minimum spanning tree for a weighted, undirected graph $G = (V, E)$. The algorithm splits the vertex set V into two disjoint sets V_1 and V_2, that differ in size by at most 1. Let E_1 be the set of edges in E that connect vertices in V_1, and let E_2 be the set of edges in E that connect vertices in V_2. The algorithm recursively solves a minimum-spanning-tree problem for the graphs (V_1, E_1) and (V_2, E_2). Finally, among all the edges that connect a vertex in V_1 to a vertex in V_2, it selects an edge of minimum weight, and uses this to unite the two subtrees found in the recursive step.

Either argue that the algorithm correctly computes a minimum spanning tree, or provide an example input for which the algorithm produces an incorrect result.