A proof that BFS finds shortest paths

In class, I presented a proof that BFS actually computes shortest paths, a fact that is intuitively “obvious,” and yet, a careful proof takes a bit of work. This handout gives the same proof, with some of the details expanded, and is provided for your reference.

First, some notation. There are n vertices in the graph, numbered $1 \ldots n$. The BFS starts at vertex r, which forms the root of the BFS tree, and a total of ℓ vertices are reachable from r (and hence visited during BFS). For a vertex v, we define

- $\text{level}[v]$ to be the level of v in the BFS tree,
- $\text{dist}[v]$ to be the actual distance from r to v in the graph, and
- $\text{pos}[v]$ to be the “position number” i of v, where $1 \leq i \leq \ell$, and v was the ith vertex to be inserted into the queue during BFS.

We want to show that $\text{level}[v] = \text{dist}[v]$ for all v. We do this by induction on $\text{pos}[v]$, and strengthen the induction hypothesis. Namely, we prove by induction on $i = 1 \ldots \ell$ that for v with $\text{pos}[v] = i$, we have

(\textbf{I1}) $\text{dist}[v] = \text{level}[v]$, and

(\textbf{I2}) for any vertex w, if $\text{dist}[w] < \text{dist}[v]$, then $\text{pos}[w] < \text{pos}[v]$.

The case $i = 1$ is trivially true, as the reader may verify. We now prove (I1) and (I2) for $1 < i \leq \ell$, assuming (I1) and (I2) hold for all $i' < i$.

To prove (I1) for i, let $\text{pos}[v] = i$, let v' be the parent of v in the BFS tree. Suppose, by way of contradiction, that there is a path

$$r \sim w \rightarrow v$$

of length $h < \text{level}[v]$. First, we have

$$\text{pos}[v'] < \text{pos}[v], \quad (1)$$

since v is placed in the queue when v' is removed from the queue. Second, we have

$$\text{dist}[w] < \text{dist}[v'], \quad (2)$$

since by (1) we may apply the induction hypothesis (I1) at $\text{pos}[v']$, obtaining

$$\text{dist}[v'] = \text{level}[v'] = \text{level}[v] - 1 > h - 1 \geq \text{dist}[w']. \quad (3)$$
Third, we have
\[\text{pos}[w] < \text{pos}[v'], \]
(3) since by (1) we may apply the induction hypothesis (I2) at \text{pos}[v'], together with (2), to obtain (3).

But now consider the point in time during the execution of BFS when \(w \) was removed from the queue. Since there is an edge \(w \rightarrow v \), the BFS algorithm would visit \(v \) at this point in time, if it had not already at an earlier time. Thus, the parent of \(v \) has position number at most \text{pos}[w], which by (3) is strictly less than \text{pos}[v], and so \(v' \) cannot be the parent of \(v \), as assumed — a contradiction.

To prove (I2), suppose \(\text{pos}[v] = i \) and
\[\text{dist}[w] < \text{dist}[v]. \]
(4)
By way of contradiction, assume that \(\text{pos}[w] \geq \text{pos}[v] \). Since by (4), \(w \neq v \), it follows that \(\text{pos}[w] \neq \text{pos}[v] \), and hence
\[\text{pos}[w] > \text{pos}[v]. \]
(5)
Let \(v' \) the parent of \(v \) in the BFS tree, and let
\[r \rightsquigarrow w' \rightarrow w \]
be a shortest path from \(r \) to \(w \). This implies that \(r \rightsquigarrow w' \) is a shortest path from \(r \) to \(w' \). From this, we may conclude that
\[\text{dist}[w'] = \text{dist}[w] - 1. \]
(6)
First, just as in the proof of (I1), we have
\[\text{pos}[v'] < \text{pos}[v]. \]
(7)
Second, by hypothesis (I1) at \(\text{pos}[v] \), which we just proved above, the tree path \(r \rightsquigarrow v' \rightarrow v \) is a shortest path, and hence the tree path \(r \rightsquigarrow v' \) is also a shortest path. From this, we may conclude that
\[\text{dist}[v'] = \text{dist}[v] - 1. \]
(8)
Now, (4), together with (6) and (8), imply that
\[\text{dist}[w'] < \text{dist}[v']. \]
(9)
Applying the induction hypothesis (I2) at $pos[v']$, which by (7) is less than $pos[v]$, along with (9), we obtain

$$pos[w'] < pos[v']. \tag{10}$$

Now, v was placed in the queue when v' was removed from the queue, and w was placed in the queue when w' was removed or at some earlier time. By (10), this means that w would be placed in the queue before v was placed in the queue, which contradicts (5).