From Löwenheim to Pnueli, from Pnueli to PSL and SVA

Moshe Y. Vardi

Rice University
Thread I: Monadic Logic

Monadic Class: First-order logic with = and monadic predicates – captures syllogisms.

• \((\forall x)P(x), (\forall x)(P(x) \rightarrow Q(x)) \models (\forall x)Q(x)\)

[Löwenheim, 1915]: The Monadic Class is decidable.
• Proof: Bounded-model property – if a sentence is satisfiable, it is satisfiable in a structure of bounded size.
• Proof technique: quantifier elimination.

Monadic Second-Order Logic: Allow second-order quantification on monadic predicates.

[Skolem, 1919]: Monadic Second-Order Logic is decidable – via bounded-model property and quantifier elimination.

Question: What about <?
Church, 1957: Use logic to specify sequential circuits.

Sequential circuits: $C = (I, O, R, f, g, R_0)$
- I: input signals
- O: output signals
- R: sequential elements
- $f : 2^I \times 2^R \rightarrow 2^R$: transition function
- $g : 2^R \rightarrow 2^O$: output function
- $R_0 \in 2^R$: initial assignment

Trace: element of $(2^I \times 2^R \times 2^O)^\omega$

$t = (I_0, R_0, O_0), (I_1, R_1, O_1), \ldots$
- $R_{j+1} = f(I_j, R_j)$
- $O_j = g(R_j)$
Specifying Traces

View infinite trace \(t = (I_0, R_0, O_0), (I_1, R_1, O_1), \ldots \) as a mathematical structure:

- **Domain**: \(\mathbb{N} \)
- **Binary relation**: \(< \)
- **Unary relations**: \(I \cup R \cup O \)

First-Order Logic (FO):

- **Unary atomic formulas**: \(P(x) \) \(P \in I \cup R \cup O \)
- **Binary atomic formulas**: \(x < y \)

Example: \((\forall x)(\exists y)(x < y \land P(y)) \) – \(P \) holds i.o.

Monadic Second-Order Logic (MSO):

- **Monadic second-order quantifier**: \(\exists Q \)
- **New unary atomic formulas**: \(Q(x) \)

Model-Checking Problem: Given circuit \(C \) and formula \(\varphi \); does \(\varphi \) hold in all traces of \(C \)?

Easy Observation: Model-checking problem reducible to satisfiability problem – use FO to encode the “logic” (i.e., \(f, g \)) of the circuit \(C \).
Büchi Automata

Büchi Automaton: \(A = (\Sigma, S, S_0, \rho, F) \)
- **Alphabet:** \(\Sigma \)
- **States:** \(S \)
- **Initial states:** \(S_0 \subseteq S \)
- **Transition function:** \(\rho : S \times \Sigma \rightarrow 2^S \)
- **Accepting states:** \(F \subseteq S \)

Input word: \(a_0, a_1, \ldots \)

Run: \(s_0, s_1, \ldots \)
- \(s_0 \in S_0 \)
- \(s_{i+1} \in \rho(s_i, a_i) \) for \(i \geq 0 \)

Acceptance: \(F \) visited infinitely often

\[\begin{array}{c}
\bullet \\
\downarrow \quad \downarrow \\
0 \quad 1
\end{array}\]

- infinitely many 1’s

Fact: Büchi automata define the class \(\omega\text{-Reg} \) of \(\omega\)-regular languages.
Logic vs. Automata

Paradigm: Compile high-level logical specifications into low-level finite-state language

Compilation-Theorem: [Büchi, 1960] Given an MSO formula \(\varphi \), one can construct a Büchi automaton \(A_\varphi \) such that a trace \(\sigma \) satisfies \(\varphi \) if and only if \(\sigma \) is accepted by \(A_\varphi \).

MSO Satisfiability Algorithm:

1. \(\varphi \) is satisfiable iff \(L(A_\varphi) \neq \emptyset \)
2. \(L(\Sigma, S, S_0, \rho, F) \neq \emptyset \) iff there is a path from \(S_0 \) to a state \(f \in F \) and a cycle from \(f \) to itself.

Corollary [Church, 1960]: Model checking sequential circuits wrt MSO specs is decidable.

Church, 1960: “Algorithm not very efficient” (nonelementary complexity, [Stockmeyer, 1974]).
Thread III: Temporal Logic

Prior, 1914–1969, Philosophical Preoccupations:

- **Religion**: Methodist, Presbytarian, atheist, agnostic
- **Ethics**: “Logic and The Basis of Ethics”, 1949
- **Free Will, Predestination, and Foreknowledge**:
 - “The future is to some extent, even if it is only a very small extent, something we can make for ourselves”.
 - “Of what will be, it has now been the case that it will be.”
 - “There is a deity who infallibly knows the entire future.”

Mary Prior: “I remember his waking me one night [in 1953], coming and sitting on my bed, . . ., and saying he thought one could make a formalised tense logic.”

- 1957: “Time and Modality”
Temporal and Classical Logics

Key Theorem:

- Kamp, 1968: Linear temporal logic with past and binary temporal connectives (“until” and “since”) has precisely the expressive power of FO over the integers.
The Temporal Logic of Programs

Precursors:

- Prior: “There are practical gains to be had from this study too, for example in the representation of time-delay in computer circuits”

- Rescher & Urquhart, 1971: applications to processes (“a programmed sequence of states, deterministic or stochastic”)

“Big Bang 1” [Pnueli, 1977]:

- Future linear temporal logic (LTL) as a logic for the specification of non-terminating programs
- Temporal logic with “always” and “eventually” (later, “next” and “until”)
- Model checking via reduction to MSO and automata

Crux: Need to specify ongoing behavior rather than input/output relation!
Linear Temporal Logic

Linear Temporal logic (LTL): logic of temporal sequences (Pnueli, 1977)

Main feature: time is implicit

- \(\text{next } \varphi \): \(\varphi \) holds in the next state.
- \(\text{eventually } \varphi \): \(\varphi \) holds eventually
- \(\text{always } \varphi \): \(\varphi \) holds from now on
- \(\varphi \text{ until } \psi \): \(\varphi \) holds until \(\psi \) holds.

\[
\pi, w \models \text{next } \varphi \text{ if } w \bullet \cdots \bullet \varphi \cdots
\]

\[
\pi, w \models \varphi \text{ until } \psi \text{ if } w \bullet \cdots \bullet \varphi \varphi \varphi \psi \cdots
\]
Examples

• always not (CS₁ and CS₂): mutual exclusion (safety)

• always (Request implies eventually Grant): liveness

• always (Request implies (Request until Grant)): liveness

• always (always eventually Request) implies eventually Grant: liveness
Expressive Power

- Gabbay, Pnueli, Shelah & Stavi, 1980: Propositional LTL has precisely the expressive power of FO over the naturals.
- Thomas, 1979: FO over naturals has the expressive power of star-free ω-regular expressions
- $\text{LTL} = \text{FO} = \text{star-free } \omega\text{-RE} < \text{MSO} = \omega\text{-RE}$

Meyer on LTL, 1980, in “Ten Thousand and One Logics of Programming”:

“The corollary due to Meyer – I have to get in my controversial remark – is that that [GPSS’80] makes it theoretically uninteresting.”
Recall: Satisfiability of FO over traces is non-elementary!

Contrast with LTL:

- Wolper, 1981: LTL satisfiability is in EXPTIME.

Basic Technique: tableau
Model Checking

“Big Bang 2” [Clarke & Emerson, 1981, Queille & Sifakis, 1982]: Model checking programs of size m wrt CTL formulas of size n can be done in time mn.

Note: CTL was a slight extension of UB, a branching-time logic introduce in [Ben-Ari, Manna, Pnueli, 1981].

Linear-Time Response [Lichtenstein & Pnueli, 1985]: Model checking programs of size m wrt LTL formulas of size n can be done in time $m2^{O(n)}$ (tableau-based).

Seemingly:
- Automata: Nonelementary
- Tableaux: exponential
Exponential-Compilation Theorem:

[V. & Wolper, 1983–1986]

Given an LTL formula φ of size n, one can construct a Büchi automaton A_φ of size $2^{O(n)}$ such that a trace σ satisfies φ if and only if σ is accepted by A_φ.

Automata-Theoretic Algorithms:

1. **LTL Satisfiability:**
 \[\varphi \text{ is satisfiable iff } L(A_\varphi) \neq \emptyset \text{ (PSPACE)} \]

2. **LTL Model Checking:**
 \[M \models \varphi \text{ iff } L(M \times A_{\neg \varphi}) = \emptyset \text{ (m}2^{O(n)}\text{)} \]
Enhancing Expressiveness

- **Wolper, 1981**: Enhance LTL with grammar operators, retaining EXPTIME-ness (PSPACE [SC’82])
- **V. & Wolper, 1983**: Enhance LTL with automata, retaining PSPACE-completeness
- **Sistla, V. & Wolper, 1985**: Enhance LTL with 2nd-order quantification, losing elementariness
- **V., 1989**: Enhance LTL with fixpoints, retaining PSPACE-completeness

Bottom Line: μTL (LTL w. fixpoints) = MSO, and has exponential-compilation property.
Thread IV: From Philosophy to Industry

Dr. Vardi Goes to Intel:

1997: (w. Fix, Hadash, Kesten, & Sananes)

V.: How about LTL?
F., H., K., & S.: Not expressive enough.

V.: How about ETL? μTL?
F., H., K., & S.: Users will object.

1998 (w. Landver)

V.: How about ETL?
L.: Users will object.
L.: How about regular expressions?
V.: They are equivalent to automata!

RELTL: LTL plus dynamic-logic modalities, interpreted linearly – $[e]\varphi$

Easy: RELTL=ω-RE

ForSpec: RELTL + hardware features (clocks and resets) [Armoni, Fix, Flaisher, Gerth, Ginsburg, Kanza, Landver, Mador-Haim, Singerman, Tiemeyer, V., Zbar]
From ForSpec to PSL and SVA

Industrial Standardization:
- Process started in 2000
- Four candidates: IBM’s Sugar, Intel’s ForSpec, Mororola’s CBV, and Verisity’s E.

Outcome:
- Big political win for IBM (see references to PSL/Sugar)
- Big technical win for Intel
 - PSL is essentially LTL + RE + clocks + resets
 - Some evolution over time in hardware features
- Major influence on the design of SVA (another industrial standard)

Bottom Line: *Huge* push for model checking in industry.
Pnueli’s Seminal Contributions

• Applying an obscure philosophical logic (LTL) to computer-science problems
 – Reasoning about ongoing behavior
 – Ease of use
 – Computational tractability

• Facilitating the emergence of model checking by introducing branching-time logic

• Showing that LTL has an exponential-time model-checking algorithm