
Juggling using Temporal Logic
Krzysztof Apt

CWI & University of Amsterdam

(joint work with Sebastian Brand)

Juggling – p. 1/17



Summary

◮◮ Qualitative reasoning abstracts from numeric quantities.

◮◮ Reasoning is carried out on the level of appropriate
abstractions.

◮◮ We show how infinite qualitative simulations can be realized
by combining qualitative reasoning with temporal reasoning.

◮◮ The implementation is realized by means of constraint
programming and uses bounded model checking.

Juggling – p. 2/17



Qualitative Spatial Reasoning: RCC8

A

B

A

B

A

B

A

B

A

B

A
B

disjoint(A,B) meet(A,B) equal(A,B)

covers(A,B)
coveredby(B,A)

contains(A,B)
inside(B,A) overlap(A,B)

Juggling – p. 3/17



The composition table for RCC8

disjoint meet equal inside coveredby contains covers overlap

disjoint RCC8 disjoint disjoint disjoint disjoint disjoint disjoint disjoint

meet meet meet meet

inside inside inside inside

coveredby coveredby coveredby coveredby

overlap overlap overlap overlap

meet disjoint disjoint meet inside meet disjoint disjoint disjoint

meet meet coveredby inside meet meet

contains equal overlap inside

covers coveredby coveredby

overlap covers overlap

overlap

equal disjoint meet equal inside coveredby contains covers overlap

inside disjoint disjoint inside inside inside RCC8 disjoint disjoint

meet meet

inside inside

coveredby coveredby

overlap overlap

coveredby disjoint disjoint coveredby inside inside disjoint disjoint disjoint

meet coveredby meet meet meet

contains equal overlap

covers coveredby coveredby

overlap covers overlap

overlap

contains disjoint contains contains equal contains contains contains contains

meet covers inside covers covers

contains overlap coveredby overlap overlap

covers contains

overlap covers

overlap

covers disjoint meet covers inside equal contains contains contains

meet contains coveredby coveredby covers covers

contains covers overlap covers overlap

covers overlap overlap

overlap

overlap disjoint disjoint overlap inside inside disjoint disjoint RCC8

meet meet coveredby coveredby meet meet

contains contains overlap overlap contains contains

covers covers covers covers

overlap overlap overlap overlap

Juggling – p. 4/17



Reasoning using RCC8

◮◮ In total 193 entries.

◮◮ This table can be used to support spatial reasoning about
objects.

◮◮ Examples:

◮◮ contains(A,B) ∧ covers(B,C) → contains(A,C).
◮◮ covers(A,B) ∧ covers(B,C) →
covers(A,C) ∨ contains(A,C).

◮◮ Integrity constraints
Example: contains(A,B) ↔ inside(B,A).

Juggling – p. 5/17



Examples of Qualitative Reasoning

◮◮ Spatial relations (RCC8) (Egenhofer ’91, Randell, Cui &
Cohn ’92).

◮◮ Temporal relations (Allen ’83): 13 temporal relations
between intervals:
before, overlaps, . . .

◮◮ Cardinal directions (Frank ’92, Ligozat ’98):
North, NorthWest, . . .

◮◮ Absolute directions (Skiadopoulos & Koubarakis ’01):
Example:
in NYC, when facing Atlanta, Washington is to the right.

◮◮ Relative size (Gerevini & Renz ’02):
<,=, >,

◮◮ . . .

Juggling – p. 6/17



Constraint Programming

An approach to programming in which the programming process
is limited to

◮◮ generation of requirements
(constraints);
it results in a
constraint satisfaction problem (CSP),

◮◮ solution of these requirements by
◮◮ specialized methods for domain specific problems

(constraint solvers),
◮◮ and/or general methods dealing with search space

reduction (constraint propagation) and search).

Juggling – p. 7/17



Example: RCC8

◮◮ Requirements: variables Q[A, B] with domain DA,B ⊆ RCC8;
A, B is an ordered pair of objects.

◮◮ Use the RCC8 composition table as a ternary relation S3.

◮◮ Example: contains(A,B), covers(B,C) implies
contains(A,C), so
(contains, covers, contains) ∈ S3.

◮◮ For each ordered triple Q[A, B], Q[B, C], Q[A, C] of variables

add the constraint CA,B,C on Q[A, B], Q[B, C], Q[A, C]:

CA,B,C := S3 ∩ (DA,B ×DB,C ×DA,C).

◮◮ So S3 removes the impossible relationships between A,B,C.

◮◮ Each problem is uniquely determined by a qualitative array Q
and integrity constraints.

Juggling – p. 8/17



Simulations

◮◮ Discrete linear time; t = 0, 1, . . .

◮◮ Each qualitative variable has now a time index: Q[A,B, t].

◮◮ Simulation: a sequence of closely related CSPs.

◮◮ Each stage t of a simulation: a CSP uniquely determined by
the qualitative array Qt and the integrity constraints.

◮◮ Inter-state constraints link the stages of the simulation.

◮◮ Temporal logic for specifying simulations:

φ eventually, φ next time,
φ from now on, ψ U φ until.

Juggling – p. 9/17



From Formulas to Constraints
Assume simulation of finite length tmax.
Evaluate formula at time t.

Translation

Principle: unravel iteratively to simple constraints.

Q[A,B] ∈ Rels at t is Q[A,B, t] ∈ Rels

φ at t is

{

φ at t+ 1 if t < tmax

? if t = tmax

φ is φ ∨ φ

Final outcome: Boolean constraints, arithmetic constraints and
simple constraints on Q.

Juggling – p. 10/17



Infinite Simulations

◮◮ Loop paths used, as in bounded model checking (Biere et
al. ’03)

◮◮ (k − ℓ)-loop:
b

Q1

b

Q2

. . . b

Qℓ

. . . b

Qk

◮◮ Theorem (Biere et al. ’03)
If a path exists that satisfies φ, then a (k − ℓ)-loop exists that
satisfies φ.

◮◮ Translation: φ at tmax is φ at ℓ

◮◮ Given a specification (a set of temporal formulas Φ) our
program repeatedly tries to construct a (k − ℓ)-loop,
incrementing tmax when needed.

◮◮ Each (k − ℓ)-loop can be finitely represented using k
qualitative arrays.

Juggling – p. 11/17



Case Study: Juggling

Qualitative formulation of juggling

Objects:

O := Hands ∪ Balls ,

Hands := {left-hand , right-hand},

Balls := {ball i | i ∈ [1..3] }.

Relations:

meet (in hand)

disjoint (in air)

Juggling – p. 12/17



Specifications: Examples
◮◮ From some time on, at most one ball is not in the air:

(∀b ∈ Balls . ∀h ∈ Hands . Q[b, h] = meet →

∀b2 ∈ Balls . b 6= b2 → ∀h2 ∈ Hands . Q[b2, h2] = disjoint).

◮◮ A ball thrown from one hand remains in the air until it lands in
the other hand:

(∀b ∈ Balls . ∀h1, h2 ∈ Hands .

h1 6= h2 ∧Q[h1, b] = meet →

Q[h1, b] = meet U (Q[h1, b] = disjoint ∧ Q[h2, b] = disjoint ∧

(Q[h1, b] = disjoint U Q[h2, b] = meet))).

Juggling – p. 13/17



Specifications, ctd

◮◮ Initial formulation was incomplete:

◮◮ several balls could be thrown at the same time instance,
◮◮ balls could “overtake” each other in the air.

◮◮ Repaired using additional temporal constraints.

Juggling – p. 14/17



Remaining constraints

◮◮ the hands are always apart,

◮◮ a ball is never in both hands at the same time,

◮◮ two balls touch if and only if they are in the same hand,

◮◮ a ball in the air will land before any other ball that is currently
in a hand,

◮◮ no two balls are thrown at the same time,

◮◮ a hand can interact with only one ball at a time.

For the resulting specifications our program finds infinite
simulation of 8 steps, with a backward loop.

Juggling – p. 15/17



Juggling

Result:

State 1 State 2 State 3 State 4 State 5 State 6 State 7 State 8

1 2 3

1

2 3

3

1

2

2

3

1

2

1

3

1

3

2

3

2

1

2

1

3

Juggling – p. 16/17



References
◮◮ K.R. Apt,

Principles of Constraint Programming,
Cambridge University Press (2003).

◮◮ K.R. Apt and S. Brand,
Constraint-Based Qualitative Simulation,
Proc. 12th International Symposium on Temporal
Representation and Reasoning (TIME ’05).

◮◮ K.R. Apt and S. Brand,
Infinite Qualitative Simulations by means of Constraint
Programming,
Proc. 12th International Conference on Principles and
Practice of Constraint Programming (CP 2006).

Juggling – p. 17/17


	Summary
	Qualitative Spatial Reasoning: RCC8
	The composition table for RCC8
	Reasoning using RCC8
	Examples of Qualitative Reasoning
	Constraint Programming
	Example: RCC8
	Simulations
	From Formulas to Constraints
	Infinite Simulations
	Case Study: Juggling
	Specifications: Examples
	Specifications, ctd
	Remaining constraints
	Juggling
	References

